These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19957287)

  • 61.
    Bajwa AA; Neubauer A; Schwerter M; Schilling L
    MAGMA; 2023 Feb; 36(1):107-118. PubMed ID: 36053432
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A precise and fast temperature mapping using water proton chemical shift.
    Ishihara Y; Calderon A; Watanabe H; Okamoto K; Suzuki Y; Kuroda K; Suzuki Y
    Magn Reson Med; 1995 Dec; 34(6):814-23. PubMed ID: 8598808
    [TBL] [Abstract][Full Text] [Related]  

  • 63. TmDOTP: An NMR-based thermometer for magic angle spinning NMR experiments.
    Zhang D; Itin B; McDermott AE
    J Magn Reson; 2019 Nov; 308():106574. PubMed ID: 31541931
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Triple-quantum-filtered (23)Na NMR spectroscopy of subcutaneously implanted 9l gliosarcoma in the rat in the presence of TmDOTP(5-1).
    Winter PM; Bansal N
    J Magn Reson; 2001 Sep; 152(1):70-8. PubMed ID: 11531365
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improved proton spectroscopic U-FLARE imaging for the detection of coupled resonances in the rat brain in vivo.
    Dreher W; Leibfritz D
    Magn Reson Imaging; 1999 May; 17(4):611-21. PubMed ID: 10231188
    [TBL] [Abstract][Full Text] [Related]  

  • 66. TmDOTP(5-) as a (23)Na shift reagent for the subcutaneously implanted 9L gliosarcoma in rats.
    Winter PM; Bansal N
    Magn Reson Med; 2001 Mar; 45(3):436-42. PubMed ID: 11241701
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Four-pool modeling of proton exchange processes in biological systems in the presence of MRI-paramagnetic chemical exchange saturation transfer (PARACEST) agents.
    Li AX; Hudson RH; Barrett JW; Jones CK; Pasternak SH; Bartha R
    Magn Reson Med; 2008 Nov; 60(5):1197-206. PubMed ID: 18958857
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging.
    Geraldes CF; Sherry AD; Brown RD; Koenig SH
    Magn Reson Med; 1986 Apr; 3(2):242-50. PubMed ID: 3086656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs.
    Parra-Robles J; Cross AR; Santyr GE
    Med Phys; 2005 Jan; 32(1):221-9. PubMed ID: 15719973
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Correction of proton resonance frequency shift temperature maps for magnetic field disturbances using fat signal.
    Shmatukha AV; Harvey PR; Bakker CJ
    J Magn Reson Imaging; 2007 Mar; 25(3):579-87. PubMed ID: 17335067
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Novel gadolinium(III) polyaminocarboxylate macrocyclic complexes as potential magnetic resonance imaging contrast agents.
    Chan KW; Barra S; Botta M; Wong WT
    J Inorg Biochem; 2004 May; 98(5):677-82. PubMed ID: 15134912
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Extracellular pH Mapping as Therapeutic Readout of Drug Delivery in Glioblastoma.
    Walsh JJ; Hyder F
    Methods Mol Biol; 2022; 2394():515-536. PubMed ID: 35094344
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of ischemia on intracellular sodium and phosphates in the in vivo rat liver.
    Xia ZF; Horton JW; Zhao PY; Babcock EE; Sherry AD; Malloy CR
    J Appl Physiol (1985); 1996 Sep; 81(3):1395-403. PubMed ID: 8889779
    [TBL] [Abstract][Full Text] [Related]  

  • 74. MRI CEST at 1T with large µeff Ln(3+) complexes T m(3+)-HPDO3A: An efficient MRI pH reporter.
    Rancan G; Delli Castelli D; Aime S
    Magn Reson Med; 2016 Jan; 75(1):329-36. PubMed ID: 25651986
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes.
    Strickland M; Schwieters CD; Göbl C; Opina AC; Strub MP; Swenson RE; Vasalatiy O; Tjandra N
    J Biomol NMR; 2016 Oct; 66(2):125-139. PubMed ID: 27659040
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vivo 35Cl MR imaging in humans: a feasibility study.
    Nagel AM; Lehmann-Horn F; Weber MA; Jurkat-Rott K; Wolf MB; Radbruch A; Umathum R; Semmler W
    Radiology; 2014 May; 271(2):585-95. PubMed ID: 24495267
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Determination of laser-induced temperature distributions using echo-shifted TurboFLASH.
    Harth T; Kahn T; Rassek M; Schwabe B; Schwarzmaier HJ; Lewin JS; Mödder U
    Magn Reson Med; 1997 Aug; 38(2):238-45. PubMed ID: 9256103
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo.
    de Graaf RA; Brown PB; McIntyre S; Nixon TW; Behar KL; Rothman DL
    Magn Reson Med; 2006 Aug; 56(2):386-94. PubMed ID: 16767752
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications.
    Aime S; Barge A; Delli Castelli D; Fedeli F; Mortillaro A; Nielsen FU; Terreno E
    Magn Reson Med; 2002 Apr; 47(4):639-48. PubMed ID: 11948724
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies.
    Henig J; Tóth E; Engelmann J; Gottschalk S; Mayer HA
    Inorg Chem; 2010 Jul; 49(13):6124-38. PubMed ID: 20527901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.