These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19957359)

  • 21. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering.
    Jing D; Wu L; Ding J
    Macromol Biosci; 2006 Sep; 6(9):747-57. PubMed ID: 16967479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.
    Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Analysis of three-dimensional microstructure of poly(lactide-co-glycolide) scaffolds made by mild heating under high pressure].
    Gao CJ; Yu B; Quan DP; Lu ZJ
    Di Yi Jun Yi Da Xue Xue Bao; 2002 Sep; 22(9):776-8. PubMed ID: 12297427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving pore interconnectivity in polymeric scaffolds for tissue engineering.
    Aydin HM; El Haj AJ; Pişkin E; Yang Y
    J Tissue Eng Regen Med; 2009 Aug; 3(6):470-6. PubMed ID: 19530258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).
    Collins NJ; Bridson RH; Leeke GA; Grover LM
    Acta Biomater; 2010 Mar; 6(3):1055-60. PubMed ID: 19671454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.
    Huang YC; Huang YY; Huang CC; Liu HC
    J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):659-64. PubMed ID: 15909301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage.
    Tanaka Y; Yamaoka H; Nishizawa S; Nagata S; Ogasawara T; Asawa Y; Fujihara Y; Takato T; Hoshi K
    Biomaterials; 2010 Jun; 31(16):4506-16. PubMed ID: 20206380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching.
    Xie Y; Lan XR; Bao RY; Lei Y; Cao ZQ; Yang MB; Yang W; Wang YB
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():602-609. PubMed ID: 29853130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity.
    Antunes JC; Oliveira JM; Reis RL; Soria JM; Gómez-Ribelles JL; Mano JF
    J Biomed Mater Res A; 2010 Sep; 94(3):856-69. PubMed ID: 20336752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
    Murphy WL; Dennis RG; Kileny JL; Mooney DJ
    Tissue Eng; 2002 Feb; 8(1):43-52. PubMed ID: 11886653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering.
    White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM
    Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
    Mo X; Weber HJ; Ramakrishna S
    Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.
    Yoon JJ; Kim JH; Park TG
    Biomaterials; 2003 Jun; 24(13):2323-9. PubMed ID: 12699670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.