These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19957763)

  • 1. The effect of nitrate and sulfate on mediator-less microbial fuel cells with high internal resistance.
    Yi T; Harper WF
    Water Environ Res; 2009 Nov; 81(11):2320-8. PubMed ID: 19957763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of exoelectrogens and electron acceptors on the performance of microbial fuel cells].
    Li FX; Zhou QX; Li BK
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3070-4. PubMed ID: 20353079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells.
    Seo Y; Kang H; Chang S; Lee YY; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):13-24. PubMed ID: 29035628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.
    Moon H; Chang IS; Kim BH
    Bioresour Technol; 2006 Mar; 97(4):621-7. PubMed ID: 15939588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].
    Cai XB; Yang Y; Sun YP; Zhang L; Xiao Y; Zhao H
    Huan Jing Ke Xue; 2010 Oct; 31(10):2512-7. PubMed ID: 21229770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of external resistance on substrate removal and electricity generation in microbial fuel cell treating sulfide and nitrate simultaneously.
    Cai J; Qaisar M; Sun Y
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):238-249. PubMed ID: 31784879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Performance of microbial fuel cells with Fe/C catalyst carbon felt air-cathode for treating landfill leachate].
    Tang YL; Peng M; Yu Y; He YT; Fu JX; Zhao YH
    Huan Jing Ke Xue; 2012 Jun; 33(6):2125-30. PubMed ID: 22946205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.
    Xie S; Liang P; Chen Y; Xia X; Huang X
    Bioresour Technol; 2011 Jan; 102(1):348-54. PubMed ID: 20685109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.
    Cai J; Zheng P; Mahmood Q
    Water Sci Technol; 2016; 73(4):947-54. PubMed ID: 26901739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation.
    Hou B; Sun J; Hu Y
    Appl Microbiol Biotechnol; 2011 May; 90(4):1563-72. PubMed ID: 21468708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electricity generation from corn steepwater using microbial fuel cell technology].
    Lu N; Zhou SG; Zhang JT; Ni JR
    Huan Jing Ke Xue; 2009 Feb; 30(2):563-7. PubMed ID: 19402516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
    Du F; Xie B; Dong W; Jia B; Dong K; Liu H
    Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Electricity generation using the packing-type microbial fuel cells].
    Liang P; Fan MZ; Cao XX; Huang X; Huang ZH; Wang C
    Huan Jing Ke Xue; 2008 Feb; 29(2):512-7. PubMed ID: 18613529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristic in electricity-generation and wastewater-treatment by the two-cylinder microbial fuel cells].
    Liang P; Huang X; Fan MZ; Cao XX; Cui Y
    Huan Jing Ke Xue; 2009 Feb; 30(2):616-20. PubMed ID: 19402525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into microbial community in microbial fuel cells simultaneously treating sulfide and nitrate under external resistance.
    Cai J; Qaisar M; Ding A; Zhang J; Xing Y; Li Q
    Biodegradation; 2021 Feb; 32(1):73-85. PubMed ID: 33442823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity production from xylose using a mediator-less microbial fuel cell.
    Huang L; Zeng RJ; Angelidaki I
    Bioresour Technol; 2008 Jul; 99(10):4178-84. PubMed ID: 17964145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of alcohol distillery wastewater using a Bacteroidetes-dominant thermophilic microbial fuel cell.
    Ha PT; Lee TK; Rittmann BE; Park J; Chang IS
    Environ Sci Technol; 2012 Mar; 46(5):3022-30. PubMed ID: 22280522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Electricity Generation by a Microbial Fuel Cell after Pretreatment of Ammonium and Nitrate in Livestock Wastewater with Microbubbles and a Catalyst.
    Jang JK; Kim T; Kang S; Sung JH; Kang YK; Kim YH
    J Microbiol Biotechnol; 2016 Nov; 26(11):1965-1971. PubMed ID: 27666989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):878-86. PubMed ID: 22423995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.