BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 19957947)

  • 1. Oxidative stress studies in yeast with a frataxin mutant: a proteomics perspective.
    Kim JH; Sedlak M; Gao Q; Riley CP; Regnier FE; Adamec J
    J Proteome Res; 2010 Feb; 9(2):730-6. PubMed ID: 19957947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress.
    Seguin A; Bayot A; Dancis A; Rogowska-Wrzesinska A; Auchère F; Camadro JM; Bulteau AL; Lesuisse E
    Mitochondrion; 2009 Apr; 9(2):130-8. PubMed ID: 19460301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin.
    Santos R; Buisson N; Knight SA; Dancis A; Camadro JM; Lesuisse E
    Mol Microbiol; 2004 Oct; 54(2):507-19. PubMed ID: 15469520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage.
    Irazusta V; Obis E; Moreno-Cermeño A; Cabiscol E; Ros J; Tamarit J
    Free Radic Biol Med; 2010 Feb; 48(3):411-20. PubMed ID: 19932164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
    Auchère F; Santos R; Planamente S; Lesuisse E; Camadro JM
    Hum Mol Genet; 2008 Sep; 17(18):2790-802. PubMed ID: 18562474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia.
    Bulteau AL; Dancis A; Gareil M; Montagne JJ; Camadro JM; Lesuisse E
    Free Radic Biol Med; 2007 May; 42(10):1561-70. PubMed ID: 17448903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the human ferritin light chain in a frataxin mutant yeast affects ageing and cell death.
    Desmyter L; Dewaele S; Reekmans R; Nystrom T; Contreras R; Chen C
    Exp Gerontol; 2004 May; 39(5):707-15. PubMed ID: 15130665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast.
    Mirzaei H; Regnier F
    J Chromatogr A; 2007 Feb; 1141(1):22-31. PubMed ID: 17188699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants.
    Martin M; Colman MJ; Gómez-Casati DF; Lamattina L; Zabaleta EJ
    FEBS Lett; 2009 Feb; 583(3):542-8. PubMed ID: 19114041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapamycin reduces oxidative stress in frataxin-deficient yeast cells.
    Marobbio CM; Pisano I; Porcelli V; Lasorsa FM; Palmieri L
    Mitochondrion; 2012 Jan; 12(1):156-61. PubMed ID: 21782979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins.
    Irazusta V; Moreno-Cermeño A; Cabiscol E; Ros J; Tamarit J
    Free Radic Biol Med; 2008 May; 44(9):1712-23. PubMed ID: 18280258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring novel function of yeast Ssa1/2p by quantitative profiling proteomics using NanoESI-LC-MS/MS.
    Matsumoto R; Nam HW; Agrawal GK; Kim YS; Iwahashi H; Rakwal R
    J Proteome Res; 2007 Sep; 6(9):3465-74. PubMed ID: 17691831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic analysis of the ccp1Delta and ccp1Delta-ccp1W191F mutant strains of Saccharomyces cerevisiae indicates that cytochrome c peroxidase functions in oxidative-stress signaling.
    Jiang H; English AM
    J Inorg Biochem; 2006 Dec; 100(12):1996-2008. PubMed ID: 17011626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc suppresses the iron-accumulation phenotype of Saccharomyces cerevisiae lacking the yeast frataxin homologue (Yfh1).
    Santos R; Dancis A; Eide D; Camadro JM; Lesuisse E
    Biochem J; 2003 Oct; 375(Pt 2):247-54. PubMed ID: 12868958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-RNA cross-linking in the ribosomes of yeast under oxidative stress.
    Mirzaei H; Regnier F
    J Proteome Res; 2006 Dec; 5(12):3249-59. PubMed ID: 17137326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism.
    Matiach A; Schröder-Köhne S
    Mol Genet Genomics; 2001 Nov; 266(3):481-96. PubMed ID: 11713678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.