These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 19957967)

  • 61. Redox Signaling Through Compartmentalization of Reactive Oxygen Species: Implications for Health and Disease.
    Wojtovich AP; Berry BJ; Galkin A
    Antioxid Redox Signal; 2019 Sep; 31(9):591-593. PubMed ID: 31084372
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities.
    Yang W; Zou L; Huang C; Lei Y
    Drug Dev Res; 2014 Aug; 75(5):331-41. PubMed ID: 25160073
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New insights into redox regulation of stem cell self-renewal and differentiation.
    Ren F; Wang K; Zhang T; Jiang J; Nice EC; Huang C
    Biochim Biophys Acta; 2015 Aug; 1850(8):1518-26. PubMed ID: 25766871
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
    Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM
    Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers.
    Forman HJ; Fukuto JM; Torres M
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C246-56. PubMed ID: 15238356
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cysteine Network (CYSTEINET) Dysregulation in Parkinson's Disease: Role of N-acetylcysteine.
    Martínez-Banaclocha M
    Curr Drug Metab; 2016; 17(4):368-85. PubMed ID: 26651975
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Assessing redox state and reactive oxygen species in circadian rhythmicity.
    König K; Galliardt H; Moore M; Treffon P; Seidel T; Dietz KJ
    Methods Mol Biol; 2014; 1158():239-71. PubMed ID: 24792057
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding.
    Zhou X; Cooper KL; Sun X; Liu KJ; Hudson LG
    J Biol Chem; 2015 Jul; 290(30):18361-9. PubMed ID: 26063799
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Redox signaling: hydrogen peroxide as intracellular messenger.
    Rhee SG
    Exp Mol Med; 1999 Jun; 31(2):53-9. PubMed ID: 10410302
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cysteine-based regulation of redox-sensitive Ras small GTPases.
    Messina S; De Simone G; Ascenzi P
    Redox Biol; 2019 Sep; 26():101282. PubMed ID: 31386964
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Platelet derived growth factor (PDGF)-induced reactive oxygen species in the lens epithelial cells: the redox signaling.
    Chen KC; Zhou Y; Xing K; Krysan K; Lou MF
    Exp Eye Res; 2004 Jun; 78(6):1057-67. PubMed ID: 15109912
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells.
    Kisty EA; Falco JA; Weerapana E
    Cell Chem Biol; 2023 Mar; 30(3):321-336.e6. PubMed ID: 36889310
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential.
    Go YM; Park H; Koval M; Orr M; Reed M; Liang Y; Smith D; Pohl J; Jones DP
    Free Radic Biol Med; 2010 Jan; 48(2):275-83. PubMed ID: 19879942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cysteine-based redox switches in enzymes.
    Klomsiri C; Karplus PA; Poole LB
    Antioxid Redox Signal; 2011 Mar; 14(6):1065-77. PubMed ID: 20799881
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells.
    Nishida M; Nishimura A; Matsunaga T; Motohashi H; Kasamatsu S; Akaike T
    Free Radic Biol Med; 2017 Aug; 109():132-140. PubMed ID: 28109891
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Redox-dependent regulation of epidermal growth factor receptor signaling.
    Heppner DE; van der Vliet A
    Redox Biol; 2016 Aug; 8():24-7. PubMed ID: 26722841
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Redox regulation of human thioredoxin network.
    Kondo N; Nakamura H; Masutani H; Yodoi J
    Antioxid Redox Signal; 2006; 8(9-10):1881-90. PubMed ID: 16987040
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Under the ROS…thiol network is the principal suspect for autophagy commitment.
    Filomeni G; Desideri E; Cardaci S; Rotilio G; Ciriolo MR
    Autophagy; 2010 Oct; 6(7):999-1005. PubMed ID: 20639698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.