These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 19958512)
1. A comprehensive assessment of N-terminal signal peptides prediction methods. Choo KH; Tan TW; Ranganathan S BMC Bioinformatics; 2009 Dec; 10 Suppl 15(Suppl 15):S2. PubMed ID: 19958512 [TBL] [Abstract][Full Text] [Related]
2. Flanking signal and mature peptide residues influence signal peptide cleavage. Choo KH; Ranganathan S BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S15. PubMed ID: 19091014 [TBL] [Abstract][Full Text] [Related]
3. Predicting Secretory Proteins with SignalP. Nielsen H Methods Mol Biol; 2017; 1611():59-73. PubMed ID: 28451972 [TBL] [Abstract][Full Text] [Related]
4. Signal peptide prediction based on analysis of experimentally verified cleavage sites. Zhang Z; Henzel WJ Protein Sci; 2004 Oct; 13(10):2819-24. PubMed ID: 15340161 [TBL] [Abstract][Full Text] [Related]
5. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment. Bouziane H; Chouarfia A J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314 [TBL] [Abstract][Full Text] [Related]
6. Signal peptide discrimination and cleavage site identification using SVM and NN. Kazemian HB; Yusuf SA; White K Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169 [TBL] [Abstract][Full Text] [Related]
7. Locating proteins in the cell using TargetP, SignalP and related tools. Emanuelsson O; Brunak S; von Heijne G; Nielsen H Nat Protoc; 2007; 2(4):953-71. PubMed ID: 17446895 [TBL] [Abstract][Full Text] [Related]
8. Prediction of signal peptides in protein sequences by neural networks. Plewczynski D; Slabinski L; Ginalski K; Rychlewski L Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221 [TBL] [Abstract][Full Text] [Related]
9. Prediction of signal peptides in archaea. Bagos PG; Tsirigos KD; Plessas SK; Liakopoulos TD; Hamodrakas SJ Protein Eng Des Sel; 2009 Jan; 22(1):27-35. PubMed ID: 18988691 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods. Leversen NA; de Souza GA; Målen H; Prasad S; Jonassen I; Wiker HG Microbiology (Reading); 2009 Jul; 155(Pt 7):2375-2383. PubMed ID: 19389770 [TBL] [Abstract][Full Text] [Related]
11. Protein subcellular localization prediction of eukaryotes using a knowledge-based approach. Lin HN; Chen CT; Sung TY; Ho SY; Hsu WL BMC Bioinformatics; 2009 Dec; 10 Suppl 15(Suppl 15):S8. PubMed ID: 19958518 [TBL] [Abstract][Full Text] [Related]
12. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Petsalaki EI; Bagos PG; Litou ZI; Hamodrakas SJ Genomics Proteomics Bioinformatics; 2006 Feb; 4(1):48-55. PubMed ID: 16689702 [TBL] [Abstract][Full Text] [Related]
13. SignalP 5.0 improves signal peptide predictions using deep neural networks. Almagro Armenteros JJ; Tsirigos KD; Sønderby CK; Petersen TN; Winther O; Brunak S; von Heijne G; Nielsen H Nat Biotechnol; 2019 Apr; 37(4):420-423. PubMed ID: 30778233 [TBL] [Abstract][Full Text] [Related]
14. Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach. Hon LS; Zhang Y; Kaminker JS; Zhang Z Hum Mutat; 2009 Jan; 30(1):99-106. PubMed ID: 18570327 [TBL] [Abstract][Full Text] [Related]
15. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. Bagos PG; Tsirigos KD; Liakopoulos TD; Hamodrakas SJ J Proteome Res; 2008 Dec; 7(12):5082-93. PubMed ID: 19367716 [TBL] [Abstract][Full Text] [Related]
16. Architecture, function and prediction of long signal peptides. Hiss JA; Schneider G Brief Bioinform; 2009 Sep; 10(5):569-78. PubMed ID: 19535397 [TBL] [Abstract][Full Text] [Related]
17. Signal-3L: A 3-layer approach for predicting signal peptides. Shen HB; Chou KC Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924 [TBL] [Abstract][Full Text] [Related]
18. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
19. Computational differentiation of N-terminal signal peptides and transmembrane helices. Yuan Z; Davis MJ; Zhang F; Teasdale RD Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012 [TBL] [Abstract][Full Text] [Related]
20. Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bagos PG; Nikolaou EP; Liakopoulos TD; Tsirigos KD Bioinformatics; 2010 Nov; 26(22):2811-7. PubMed ID: 20847219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]