BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 19959103)

  • 1. C/EBPα and MYB regulate FLT3 expression in AML.
    Volpe G; Walton DS; Del Pozzo W; Garcia P; Dassé E; O'Neill LP; Griffiths M; Frampton J; Dumon S
    Leukemia; 2013 Jul; 27(7):1487-96. PubMed ID: 23340802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CEBPA bZIP in-frame mutations in acute myeloid leukemia: prognostic and therapeutic implications.
    Zhang F; Shen Z; Xie J; Zhang J; Wu Q; Jiang R; Zhao X; Yang X; Chen S
    Blood Cancer J; 2024 Apr; 14(1):59. PubMed ID: 38594276
    [No Abstract]   [Full Text] [Related]  

  • 3. Acute myeloid leukemia: 2013 update on risk-stratification and management.
    Estey EH
    Am J Hematol; 2013 Apr; 88(4):318-27. PubMed ID: 23526416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A drug-biomarker interaction model to predict the key targets of Scutellaria barbata D. Don in adverse-risk acute myeloid leukaemia.
    Wang T; Lyu CY; Jiang YH; Dong XY; Wang Y; Li ZH; Wang JX; Xu RR
    Mol Divers; 2021 Nov; 25(4):2351-2365. PubMed ID: 32676746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the microRNA-mRNA regulatory network in acute myeloid leukemia.
    Zhang H; Zhang C; Feng R; Zhang H; Gao M; Ye L
    Oncol Lett; 2017 Oct; 14(4):3981-3988. PubMed ID: 28989535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of oncogenes and tumor suppressor genes in AML prognosis.
    Kavianpour M; Ahmadzadeh A; Shahrabi S; Saki N
    Tumour Biol; 2016 Aug; 37(8):10041-52. PubMed ID: 27179964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia.
    Eriksson A; Hermanson M; Wickström M; Lindhagen E; Ekholm C; Jenmalm Jensen A; Löthgren A; Lehmann F; Larsson R; Parrow V; Höglund M
    Blood Cancer J; 2012 Aug; 2(8):e81. PubMed ID: 22864397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons learned from the investigational device exemption review of Children's Oncology Group trial AAML1031.
    Meshinchi S; Hunger SP; Aplenc R; Adamson PC; Jessup JM
    Clin Cancer Res; 2012 Mar; 18(6):1547-54. PubMed ID: 22422407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia.
    Zhu YD; Wang L; Sun C; Fan L; Zhu DX; Fang C; Wang YH; Zou ZJ; Zhang SJ; Li JY; Xu W
    Med Oncol; 2012 Dec; 29(4):2323-31. PubMed ID: 22209839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study.
    Vergez F; Green AS; Tamburini J; Sarry JE; Gaillard B; Cornillet-Lefebvre P; Pannetier M; Neyret A; Chapuis N; Ifrah N; Dreyfus F; Manenti S; Demur C; Delabesse E; Lacombe C; Mayeux P; Bouscary D; Recher C; Bardet V
    Haematologica; 2011 Dec; 96(12):1792-8. PubMed ID: 21933861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice.
    Li L; Bailey E; Greenblatt S; Huso D; Small D
    Blood; 2011 Nov; 118(18):4935-45. PubMed ID: 21908433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prognostic impact of germline 46/1 haplotype of Janus kinase 2 in cytogenetically normal acute myeloid leukemia.
    Nahajevszky S; Andrikovics H; Batai A; Adam E; Bors A; Csomor J; Gopcsa L; Koszarska M; Kozma A; Lovas N; Lueff S; Matrai Z; Meggyesi N; Sinko J; Sipos A; Varkonyi A; Fekete S; Tordai A; Masszi T
    Haematologica; 2011 Nov; 96(11):1613-8. PubMed ID: 21791467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prognostic factors in pediatric acute myeloid leukemia.
    Radhi M; Meshinchi S; Gamis A
    Curr Hematol Malig Rep; 2010 Oct; 5(4):200-6. PubMed ID: 20652454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic factors in AML in relation to (ab)normal karyotype.
    Stone RM
    Best Pract Res Clin Haematol; 2009 Dec; 22(4):523-8. PubMed ID: 19959103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of cooperative gene mutations between class I and class II in de novo acute myeloid leukemia.
    Ishikawa Y; Kiyoi H; Tsujimura A; Miyawaki S; Miyazaki Y; Kuriyama K; Tomonaga M; Naoe T
    Eur J Haematol; 2009 Aug; 83(2):90-8. PubMed ID: 19309322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations.
    Green CL; Koo KK; Hills RK; Burnett AK; Linch DC; Gale RE
    J Clin Oncol; 2010 Jun; 28(16):2739-47. PubMed ID: 20439648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment in patients with acute myeloid leukemia and a normal karyotype.
    Bienz M; Ludwig M; Leibundgut EO; Mueller BU; Ratschiller D; Solenthaler M; Fey MF; Pabst T
    Clin Cancer Res; 2005 Feb; 11(4):1416-24. PubMed ID: 15746041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinically useful prognostic factors in acute myeloid leukemia.
    Ferrara F; Palmieri S; Leoni F
    Crit Rev Oncol Hematol; 2008 Jun; 66(3):181-93. PubMed ID: 17996460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications.
    Marcucci G; Haferlach T; Döhner H
    J Clin Oncol; 2011 Feb; 29(5):475-86. PubMed ID: 21220609
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.