BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19959498)

  • 21. Genome-wide analysis of the cis-regulatory modules of divergent gene pairs in yeast.
    Su CH; Shih CH; Chang TH; Tsai HK
    Genomics; 2010 Dec; 96(6):352-61. PubMed ID: 20826206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CYGD: the Comprehensive Yeast Genome Database.
    Güldener U; Münsterkötter M; Kastenmüller G; Strack N; van Helden J; Lemer C; Richelles J; Wodak SJ; García-Martínez J; Pérez-Ortín JE; Michael H; Kaps A; Talla E; Dujon B; André B; Souciet JL; De Montigny J; Bon E; Gaillardin C; Mewes HW
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D364-8. PubMed ID: 15608217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD; Schmitz J; Hörz W
    J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. STOP: searching for transcription factor motifs using gene expression.
    Hertzberg L; Izraeli S; Domany E
    Bioinformatics; 2007 Jul; 23(14):1737-43. PubMed ID: 17488754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system.
    Robinson KM; Schultz MC
    Biochemistry; 2005 Mar; 44(11):4551-61. PubMed ID: 15766286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin: bind at your own RSC.
    Buchler NE; Bai L
    Curr Biol; 2011 Mar; 21(6):R223-5. PubMed ID: 21419988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects of chromatin regulators and transcription factors on gene regulation: a nucleosomal perspective.
    Dong D; Shao X; Zhang Z
    Bioinformatics; 2011 Jan; 27(2):147-52. PubMed ID: 21075748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculating transcription factor binding maps for chromatin.
    Teif VB; Rippe K
    Brief Bioinform; 2012 Mar; 13(2):187-201. PubMed ID: 21737419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. YGA: identifying distinct biological features between yeast gene sets.
    Chang DT; Li WS; Bai YH; Wu WS
    Gene; 2013 Apr; 518(1):26-34. PubMed ID: 23266802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local.
    Goh WS; Orlov Y; Li J; Clarke ND
    PLoS Comput Biol; 2010 Jan; 6(1):e1000649. PubMed ID: 20098497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrative approach to understanding the combinatorial histone code at functional elements.
    Lai WK; Buck MJ
    Bioinformatics; 2013 Sep; 29(18):2231-7. PubMed ID: 23821650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. bPeaks: a bioinformatics tool to detect transcription factor binding sites from ChIPseq data in yeasts and other organisms with small genomes.
    Merhej J; Frigo A; Le Crom S; Camadro JM; Devaux F; Lelandais G
    Yeast; 2014 Oct; 31(10):375-91. PubMed ID: 25041923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of association between nucleosome occupancy and the evolution of transcription factor binding sites in yeast.
    Swamy KB; Chu WY; Wang CY; Tsai HK; Wang D
    BMC Evol Biol; 2011 May; 11():150. PubMed ID: 21627806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Many sequence-specific chromatin modifying protein-binding motifs show strong positional preferences for potential regulatory regions in the Saccharomyces cerevisiae genome.
    Hansen L; Mariño-Ramírez L; Landsman D
    Nucleic Acids Res; 2010 Apr; 38(6):1772-9. PubMed ID: 20047965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.