These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19959549)

  • 1. The fatigued spinal cord.
    Rothwell JC
    J Physiol; 2009 Dec; 587(Pt 23):5517-8. PubMed ID: 19959549
    [No Abstract]   [Full Text] [Related]  

  • 2. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects.
    Andersen B; Felding UA; Krarup C
    J Appl Physiol (1985); 2012 Mar; 112(5):832-40. PubMed ID: 22174399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation conditions can improve the validity of the interpolated twitch technique.
    Duchateau J
    J Appl Physiol (1985); 2009 Jul; 107(1):361; discussion 367-8. PubMed ID: 19670474
    [No Abstract]   [Full Text] [Related]  

  • 4. First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.
    Dishman JD; Ball KA; Burke J
    J Manipulative Physiol Ther; 2002 Jan; 25(1):1-9. PubMed ID: 11898013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective activation and graded recruitment of functional muscle groups through spinal cord stimulation.
    Mushahwar VK; Horch KW
    Ann N Y Acad Sci; 1998 Nov; 860():531-5. PubMed ID: 9928355
    [No Abstract]   [Full Text] [Related]  

  • 7. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial magnetic stimulation and human muscle fatigue.
    Taylor JL; Gandevia SC
    Muscle Nerve; 2001 Jan; 24(1):18-29. PubMed ID: 11150962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ; Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ITT: a tool to demonstrate muscle inactivation rather than to calculate a percentage of activation.
    Racinais S; Girard O
    J Appl Physiol (1985); 2009 Jul; 107(1):361; discussion 367-8. PubMed ID: 19670473
    [No Abstract]   [Full Text] [Related]  

  • 12. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle recruitment through electrical stimulation of the lumbo-sacral spinal cord.
    Mushahwar VK; Horch KW
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):22-9. PubMed ID: 10779104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of input-output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients.
    Davey NJ; Smith HC; Savic G; Maskill DW; Ellaway PH; Frankel HL
    Exp Brain Res; 1999 Aug; 127(4):382-90. PubMed ID: 10480273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF; Kuzyk S; Jakobi JM; McNeil CJ
    J Neurophysiol; 2020 Feb; 123(2):522-528. PubMed ID: 31774348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural control of hand movements.
    Perez MA
    Motor Control; 2015 Apr; 19(2):135-41. PubMed ID: 25931472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.
    Davey NJ; Romaiguère P; Maskill DW; Ellaway PH
    J Physiol; 1994 Jun; 477(Pt 2):223-35. PubMed ID: 7932215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects.
    Houlden DA; Schwartz ML; Tator CH; Ashby P; MacKay WA
    J Neurosci; 1999 Mar; 19(5):1855-62. PubMed ID: 10024369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans.
    Valero-Cabré A; Oliveri M; Gangitano M; Pascual-Leone A
    Neuroreport; 2001 Dec; 12(17):3845-8. PubMed ID: 11726806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral integration of sensorimotor signals during pedaling.
    Ting LH; Kautz SA; Brown DA; Van der Loos HF; Zajac FE
    Ann N Y Acad Sci; 1998 Nov; 860():513-6. PubMed ID: 9928350
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.