These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 19959835)
1. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. Bhunia A; Domadia PN; Torres J; Hallock KJ; Ramamoorthy A; Bhattacharjya S J Biol Chem; 2010 Feb; 285(6):3883-3895. PubMed ID: 19959835 [TBL] [Abstract][Full Text] [Related]
2. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Saravanan R; Mohanram H; Joshi M; Domadia PN; Torres J; Ruedl C; Bhattacharjya S Biochim Biophys Acta; 2012 Jul; 1818(7):1613-24. PubMed ID: 22464970 [TBL] [Abstract][Full Text] [Related]
3. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. Saravanan R; Joshi M; Mohanram H; Bhunia A; Mangoni ML; Bhattacharjya S PLoS One; 2013; 8(9):e72718. PubMed ID: 24039798 [TBL] [Abstract][Full Text] [Related]
4. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
5. Structure and orientation of pardaxin determined by NMR experiments in model membranes. Porcelli F; Buck B; Lee DK; Hallock KJ; Ramamoorthy A; Veglia G J Biol Chem; 2004 Oct; 279(44):45815-23. PubMed ID: 15292173 [TBL] [Abstract][Full Text] [Related]
6. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. Bhunia A; Saravanan R; Mohanram H; Mangoni ML; Bhattacharjya S J Biol Chem; 2011 Jul; 286(27):24394-406. PubMed ID: 21586570 [TBL] [Abstract][Full Text] [Related]
7. Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide. Bhunia A; Domadia PN; Bhattacharjya S Biochim Biophys Acta; 2007 Dec; 1768(12):3282-91. PubMed ID: 17854761 [TBL] [Abstract][Full Text] [Related]
8. Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action. Junkes C; Harvey RD; Bruce KD; Dölling R; Bagheri M; Dathe M Eur Biophys J; 2011 Apr; 40(4):515-28. PubMed ID: 21286704 [TBL] [Abstract][Full Text] [Related]
9. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. Bhunia A; Mohanram H; Domadia PN; Torres J; Bhattacharjya S J Biol Chem; 2009 Aug; 284(33):21991-22004. PubMed ID: 19520860 [TBL] [Abstract][Full Text] [Related]
11. Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control. Datta A; Bhattacharyya D; Singh S; Ghosh A; Schmidtchen A; Malmsten M; Bhunia A J Biol Chem; 2016 Jun; 291(25):13301-17. PubMed ID: 27137928 [TBL] [Abstract][Full Text] [Related]
12. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Oren Z; Shai Y Eur J Biochem; 1996 Apr; 237(1):303-10. PubMed ID: 8620888 [TBL] [Abstract][Full Text] [Related]
13. Sequence context induced antimicrobial activity: insight into lipopolysaccharide permeabilization. Ghosh A; Datta A; Jana J; Kar RK; Chatterjee C; Chatterjee S; Bhunia A Mol Biosyst; 2014 Jun; 10(6):1596-612. PubMed ID: 24714742 [TBL] [Abstract][Full Text] [Related]
14. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Shang D; Zhang Q; Dong W; Liang H; Bi X Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205 [TBL] [Abstract][Full Text] [Related]
15. NMR structure and binding of esculentin-1a (1-21)NH2 and its diastereomer to lipopolysaccharide: Correlation with biological functions. Ghosh A; Bera S; Shai Y; Mangoni ML; Bhunia A Biochim Biophys Acta; 2016 Apr; 1858(4):800-12. PubMed ID: 26724203 [TBL] [Abstract][Full Text] [Related]
16. 'Lollipop'-shaped helical structure of a hybrid antimicrobial peptide of temporin B-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity. Mohanram H; Bhattacharjya S Biochim Biophys Acta; 2016 Jun; 1860(6):1362-72. PubMed ID: 27015761 [TBL] [Abstract][Full Text] [Related]
17. Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Bhunia A; Ramamoorthy A; Bhattacharjya S Chemistry; 2009; 15(9):2036-40. PubMed ID: 19180607 [TBL] [Abstract][Full Text] [Related]
18. Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Bagheri M; Keller S; Dathe M Antimicrob Agents Chemother; 2011 Feb; 55(2):788-97. PubMed ID: 21098244 [TBL] [Abstract][Full Text] [Related]
19. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. Papo N; Shai Y J Biol Chem; 2005 Mar; 280(11):10378-87. PubMed ID: 15632151 [TBL] [Abstract][Full Text] [Related]
20. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]