BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19961205)

  • 21. Using machine learning methods to predict experimental high-throughput screening data.
    Mballo C; Makarenkov V
    Comb Chem High Throughput Screen; 2010 Jun; 13(5):430-41. PubMed ID: 20236062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Handling missing values in support vector machine classifiers.
    Pelckmans K; De Brabanter J; Suykens JA; De Moor B
    Neural Netw; 2005; 18(5-6):684-92. PubMed ID: 16111866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Support vector machines for dyadic data.
    Hochreiter S; Obermayer K
    Neural Comput; 2006 Jun; 18(6):1472-510. PubMed ID: 16764511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual screening of Abl inhibitors from large compound libraries by support vector machines.
    Liu XH; Ma XH; Tan CY; Jiang YY; Go ML; Low BC; Chen YZ
    J Chem Inf Model; 2009 Sep; 49(9):2101-10. PubMed ID: 19689138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y; Yuki H; Moriya T; Hattori K; Suzuki M; Shimada K; Honma T
    J Mol Graph Model; 2008 Feb; 26(6):907-15. PubMed ID: 17683964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving gene expression cancer molecular pattern discovery using nonnegative principal component analysis.
    Han X
    Genome Inform; 2008; 21():200-11. PubMed ID: 19425159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bayesian model averaging for ligand discovery.
    Angelopoulos N; Hadjiprocopis A; Walkinshaw MD
    J Chem Inf Model; 2009 Jun; 49(6):1547-57. PubMed ID: 19489531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatically detecting workflows in PubChem.
    Calhoun BT; Browning MR; Chen BR; Bittker JA; Swamidass SJ
    J Biomol Screen; 2012 Sep; 17(8):1071-9. PubMed ID: 22693105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel kernel-based maximum a posteriori classification method.
    Xu Z; Huang K; Zhu J; King I; Lyu MR
    Neural Netw; 2009 Sep; 22(7):977-87. PubMed ID: 19167865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neighborhood property-based pattern selection for support vector machines.
    Shin H; Cho S
    Neural Comput; 2007 Mar; 19(3):816-55. PubMed ID: 17298235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved modeling of clinical data with kernel methods.
    Daemen A; Timmerman D; Van den Bosch T; Bottomley C; Kirk E; Van Holsbeke C; Valentin L; Bourne T; De Moor B
    Artif Intell Med; 2012 Feb; 54(2):103-14. PubMed ID: 22134094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression.
    Du H; Wang J; Hu Z; Yao X; Zhang X
    J Agric Food Chem; 2008 Nov; 56(22):10785-92. PubMed ID: 18950187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds.
    Helma C; Cramer T; Kramer S; De Raedt L
    J Chem Inf Comput Sci; 2004; 44(4):1402-11. PubMed ID: 15272848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scalable partitioning and exploration of chemical spaces using geometric hashing.
    Dutta D; Guha R; Jurs PC; Chen T
    J Chem Inf Model; 2006; 46(1):321-33. PubMed ID: 16426067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast protein classification with multiple networks.
    Tsuda K; Shin H; Schölkopf B
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii59-65. PubMed ID: 16204126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds.
    Geppert H; Horváth T; Gärtner T; Wrobel S; Bajorath J
    J Chem Inf Model; 2008 Apr; 48(4):742-6. PubMed ID: 18318473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of electrocardiogram signals with support vector machines and particle swarm optimization.
    Melgani F; Bazi Y
    IEEE Trans Inf Technol Biomed; 2008 Sep; 12(5):667-77. PubMed ID: 18779082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.