BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19961236)

  • 1. Biodegradation of physicochemically treated polycarbonate by fungi.
    Artham T; Doble M
    Biomacromolecules; 2010 Jan; 11(1):20-8. PubMed ID: 19961236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on reaction-induced miscibility of poly(trimethylene terephthalate)/polycarbonate blends.
    Aravind I; Eichhorn KJ; Komber H; Jehnichen D; Zafeiropoulos NE; Ahn KH; Grohens Y; Stamm M; Thomas S
    J Phys Chem B; 2009 Feb; 113(6):1569-78. PubMed ID: 19193163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaetechrysosporium in lignin biodegradation.
    Hu M; Zhang W; Wu Y; Gao P; Lu X
    Bioresour Technol; 2009 Mar; 100(6):2077-81. PubMed ID: 19038543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus.
    Shin EH; Choi HT; Song HG
    J Microbiol Biotechnol; 2007 Jul; 17(7):1147-51. PubMed ID: 18051326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes.
    Jeyakumar D; Chirsteen J; Doble M
    Bioresour Technol; 2013 Nov; 148():78-85. PubMed ID: 24045194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of aliphatic and aromatic polycarbonates.
    Artham T; Doble M
    Macromol Biosci; 2008 Jan; 8(1):14-24. PubMed ID: 17849431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation and formation of bisphenol A in polycarbonate used in dentistry.
    Watanabe M
    J Med Dent Sci; 2004 Mar; 51(1):1-6. PubMed ID: 15137459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium.
    Lu Y; Yan L; Wang Y; Zhou S; Fu J; Zhang J
    J Hazard Mater; 2009 Jun; 165(1-3):1091-7. PubMed ID: 19062164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. White-rot fungi demonstrate first biodegradation of phenolic resin.
    Gusse AC; Miller PD; Volk TJ
    Environ Sci Technol; 2006 Jul; 40(13):4196-9. PubMed ID: 16856735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate.
    Wu R; Al-Azemi TF; Bisht KS
    Biomacromolecules; 2008 Oct; 9(10):2921-8. PubMed ID: 18771312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation and mineralization of azo dye reactive blue 222 by sequential Photo-Fenton's oxidation followed by aerobic biological treatment using white rot fungi.
    Kiran S; Ali S; Asgher M
    Bull Environ Contam Toxicol; 2013 Feb; 90(2):208-15. PubMed ID: 23272326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi.
    Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T
    Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi.
    Walter M; Boul L; Chong R; Ford C
    J Environ Manage; 2004 Jul; 71(4):361-9. PubMed ID: 15217724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac].
    Liu F; Li L; Yu S; Lv Z; Ge X
    J Hazard Mater; 2011 May; 189(1-2):249-54. PubMed ID: 21402441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids.
    Liu F; Li Z; Yu S; Cui X; Ge X
    J Hazard Mater; 2010 Feb; 174(1-3):872-5. PubMed ID: 19773125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bisphenol A migration from polycarbonate baby bottle with repeated use.
    Nam SH; Seo YM; Kim MG
    Chemosphere; 2010 May; 79(9):949-52. PubMed ID: 20334893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of acrylic copolymers by white-rot fungi.
    Mai C; Schormann W; Majcherczyk A; Hüttermann A
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):479-87. PubMed ID: 15257422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent control of adhesive and bulk properties of hybrid silica coatings on polycarbonate.
    Lionti K; Cui L; Volksen W; Dauskardt R; Dubois G; Toury B
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11276-80. PubMed ID: 24090249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.
    Hwang HD; Kim HJ
    J Colloid Interface Sci; 2011 Oct; 362(2):274-84. PubMed ID: 21788027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry.
    Grinhut T; Hertkorn N; Schmitt-Kopplin P; Hadar Y; Chen Y
    Environ Sci Technol; 2011 Apr; 45(7):2748-54. PubMed ID: 21405116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.