BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19961539)

  • 1. Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, Danio rerio.
    Mitra S; Alnabulsi A; Secombes CJ; Bird S
    FEBS J; 2010 Jan; 277(1):128-47. PubMed ID: 19961539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-bet regulates differentiation of forkhead box protein 3+ regulatory T cells in programmed cell death-1-deficient mice.
    Tahara M; Kondo Y; Yokosawa M; Tsuboi H; Takahashi S; Shibayama S; Matsumoto I; Sumida T
    Clin Exp Immunol; 2015 Feb; 179(2):197-209. PubMed ID: 25219397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation.
    Koch MA; Tucker-Heard G; Perdue NR; Killebrew JR; Urdahl KB; Campbell DJ
    Nat Immunol; 2009 Jun; 10(6):595-602. PubMed ID: 19412181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential gene expression following TLR stimulation in rag1-/- mutant zebrafish tissues and morphological descriptions of lymphocyte-like cell populations.
    Muire PJ; Hanson LA; Wills R; Petrie-Hanson L
    PLoS One; 2017; 12(9):e0184077. PubMed ID: 28910320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-bet in the spot light: roles in distinct T-cell fate determination.
    Jayaraman S
    Cell Mol Immunol; 2013 Jul; 10(4):289-91. PubMed ID: 23686227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of zebrafish homologs of human FOXQ1, foxq1a and foxq1b, in innate immune cell development and bacterial host response.
    Earley AM; Dixon CT; Shiau CE
    PLoS One; 2018; 13(3):e0194207. PubMed ID: 29534099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foxn1 is not essential for T-cell development in teleosts.
    Schorpp M; Swann JB; Hess I; Ho HC; Pietsch TW; Boehm T
    Eur J Immunol; 2023 Dec; 53(12):e2350725. PubMed ID: 37724048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution of the novel immune-type receptor gene cluster in zebrafish.
    Yoder JA; Litman RT; Mueller MG; Desai S; Dobrinski KP; Montgomery JS; Buzzeo MP; Ota T; Amemiya CT; Trede NS; Wei S; Djeu JY; Humphray S; Jekosch K; Hernandez Prada JA; Ostrov DA; Litman GW
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15706-11. PubMed ID: 15496470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Silico Prediction of Transcription Factor Collaborations Underlying Phenotypic Sexual Dimorphism in Zebrafish (
    Hosseini S; Schmitt AO; Tetens J; Brenig B; Simianer H; Sharifi AR; Gültas M
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34200177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish.
    Quintana FJ; Iglesias AH; Farez MF; Caccamo M; Burns EJ; Kassam N; Oukka M; Weiner HL
    PLoS One; 2010 Mar; 5(3):e9478. PubMed ID: 20221429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adequate Th2-type response associates with restricted bacterial growth in latent mycobacterial infection of zebrafish.
    Hammarén MM; Oksanen KE; Nisula HM; Luukinen BV; Pesu M; Rämet M; Parikka M
    PLoS Pathog; 2014 Jun; 10(6):e1004190. PubMed ID: 24968056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Demonstration of Antigen Induced Cytokine Expression by CD4-1+ Lymphocytes in a Poikilotherm: Studies in Zebrafish (Danio rerio).
    Yoon S; Mitra S; Wyse C; Alnabulsi A; Zou J; Weerdenburg EM; van der Sar AM; Wang D; Secombes CJ; Bird S
    PLoS One; 2015; 10(6):e0126378. PubMed ID: 26083432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MHC class I genes of zebrafish.
    Dirscherl H; McConnell SC; Yoder JA; de Jong JL
    Dev Comp Immunol; 2014 Sep; 46(1):11-23. PubMed ID: 24631581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the zebrafish T cell receptor beta locus.
    Meeker ND; Smith AC; Frazer JK; Bradley DF; Rudner LA; Love C; Trede NS
    Immunogenetics; 2010 Jan; 62(1):23-9. PubMed ID: 20054533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish.
    Saralahti AK; Harjula SE; Rantapero T; Uusi-Mäkelä MIE; Kaasinen M; Junno M; Piippo H; Nykter M; Lohi O; Rounioja S; Parikka M; Rämet M
    PLoS Genet; 2023 Jan; 19(1):e1010586. PubMed ID: 36622851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish.
    Rubin SA; Baron CS; Pessoa Rodrigues C; Duran M; Corbin AF; Yang SP; Trapnell C; Zon LI
    J Exp Med; 2022 Sep; 219(9):. PubMed ID: 35938989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent.
    Robertson TF; Huttenlocher A
    Immunol Rev; 2022 Mar; 306(1):258-270. PubMed ID: 35023170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Characterization of a Master Transcription Factor of Th1 Cells, T-bet, Within Flounder (
    Tian H; Xing J; Tang X; Chi H; Sheng X; Zhan W
    Front Immunol; 2021; 12():704324. PubMed ID: 34262572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity.
    Miao KZ; Kim GY; Meara GK; Qin X; Feng H
    Front Cell Dev Biol; 2021; 9():660969. PubMed ID: 34095125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection.
    Le Luyer J; Schull Q; Auffret P; Lopez P; Crusot M; Belliard C; Basset C; Carradec Q; Poulain J; Planes S; Saulnier D
    Anim Microbiome; 2021 May; 3(1):35. PubMed ID: 33962693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.