These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19961587)

  • 1. Impact of environmental inputs on reverse-engineering approach to network structures.
    Wu J; Sinfield JL; Buchanan-Wollaston V; Feng J
    BMC Syst Biol; 2009 Dec; 3():113. PubMed ID: 19961587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis.
    Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X
    BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions.
    Carrera J; Rodrigo G; Jaramillo A; Elena SF
    Genome Biol; 2009; 10(9):R96. PubMed ID: 19754933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Listen to genes: dealing with microarray data in the frequency domain.
    Feng J; Yi D; Krishna R; Guo S; Buchanan-Wollaston V
    PLoS One; 2009; 4(4):e5098. PubMed ID: 22745650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attraction basins as gauges of robustness against boundary conditions in biological complex systems.
    Demongeot J; Goles E; Morvan M; Noual M; Sené S
    PLoS One; 2010 Aug; 5(8):e11793. PubMed ID: 20700525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.
    Espinosa-Soto C; Padilla-Longoria P; Alvarez-Buylla ER
    Plant Cell; 2004 Nov; 16(11):2923-39. PubMed ID: 15486106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    Leal Valentim F; Mourik Sv; Posé D; Kim MC; Schmid M; van Ham RC; Busscher M; Sanchez-Perez GF; Molenaar J; Angenent GC; Immink RG; van Dijk AD
    PLoS One; 2015; 10(2):e0116973. PubMed ID: 25719734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of RNA-seq- and microarray-derived coexpression networks in Arabidopsis thaliana.
    Giorgi FM; Del Fabbro C; Licausi F
    Bioinformatics; 2013 Mar; 29(6):717-24. PubMed ID: 23376351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Seo E; Lee H; Jeon J; Park H; Kim J; Noh YS; Lee I
    Plant Cell; 2009 Oct; 21(10):3185-97. PubMed ID: 19825833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of variation in expression networks.
    Kliebenstein DJ
    Methods Mol Biol; 2009; 553():227-45. PubMed ID: 19588108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incoherent Inputs Enhance the Robustness of Biological Oscillators.
    Li Z; Liu S; Yang Q
    Cell Syst; 2017 Jul; 5(1):72-81.e4. PubMed ID: 28750200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene networks in Arabidopsis thaliana for metabolic and environmental functions.
    Ma S; Bohnert HJ
    Mol Biosyst; 2008 Mar; 4(3):199-204. PubMed ID: 18437262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana.
    Bouché F; Lobet G; Tocquin P; Périlleux C
    Nucleic Acids Res; 2016 Jan; 44(D1):D1167-71. PubMed ID: 26476447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic and Stochastic Models of Arabidopsis thaliana Flowering.
    Haspolat E; Huard B; Angelova M
    Bull Math Biol; 2019 Jan; 81(1):277-311. PubMed ID: 30411251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.
    Grzegorczyk M; Husmeier D
    Stat Appl Genet Mol Biol; 2012 Jul; 11(4):. PubMed ID: 22850067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato.
    Tao X; Gu YH; Jiang YS; Zhang YZ; Wang HY
    Biosci Biotechnol Biochem; 2013; 77(11):2169-74. PubMed ID: 24200775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive approach to genes involved in cell wall modifications in Arabidopsis thaliana.
    Imoto K; Yokoyama R; Nishitani K
    Plant Mol Biol; 2005 May; 58(2):177-92. PubMed ID: 16027973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.
    Galvão VC; Horrer D; Küttner F; Schmid M
    Development; 2012 Nov; 139(21):4072-82. PubMed ID: 22992955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Flowering Time Mutants.
    Wang X; Liu Q; He W; Lin C; Wang Q
    Methods Mol Biol; 2019; 2026():193-199. PubMed ID: 31317414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinations between gene modules control the operation of plant amino acid metabolic networks.
    Less H; Galili G
    BMC Syst Biol; 2009 Jan; 3():14. PubMed ID: 19171064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.