These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 19962068)
1. Volumetric injury of the physis during single-bundle anterior cruciate ligament reconstruction in children: a 3-dimensional study using magnetic resonance imaging. Shea KG; Belzer J; Apel PJ; Nilsson K; Grimm NL; Pfeiffer RP Arthroscopy; 2009 Dec; 25(12):1415-22. PubMed ID: 19962068 [TBL] [Abstract][Full Text] [Related]
2. Volumetric injury of the distal femoral physis during double-bundle ACL reconstruction in children: a three-dimensional study with use of magnetic resonance imaging. Shea KG; Grimm NL; Belzer JS J Bone Joint Surg Am; 2011 Jun; 93(11):1033-8. PubMed ID: 21655896 [TBL] [Abstract][Full Text] [Related]
3. Volumetric Damage to the Femoral Physis During Double-Bundle Posterior Cruciate Ligament Reconstruction: A Magnetic Resonance Imaging Computer Modeling Study. Shea KG; Grimm NL; Nichols FR; Jacobs JC Arthroscopy; 2015 Jun; 31(6):1102-7. PubMed ID: 25771426 [TBL] [Abstract][Full Text] [Related]
4. Anterior cruciate ligament reconstruction in the skeletally immature: an anatomical study utilizing 3-dimensional magnetic resonance imaging reconstructions. Kercher J; Xerogeanes J; Tannenbaum A; Al-Hakim R; Black JC; Zhao J J Pediatr Orthop; 2009 Mar; 29(2):124-9. PubMed ID: 19352236 [TBL] [Abstract][Full Text] [Related]
5. The anatomy of the proximal tibia in pediatric and adolescent patients: implications for ACL reconstruction and prevention of physeal arrest. Shea KG; Apel PJ; Pfeiffer RP; Traughber PD Knee Surg Sports Traumatol Arthrosc; 2007 Apr; 15(4):320-7. PubMed ID: 16909299 [TBL] [Abstract][Full Text] [Related]
6. All-inside, physeal-sparing anterior cruciate ligament reconstruction does not significantly compromise the physis in skeletally immature athletes: a postoperative physeal magnetic resonance imaging analysis. Nawabi DH; Jones KJ; Lurie B; Potter HG; Green DW; Cordasco FA Am J Sports Med; 2014 Dec; 42(12):2933-40. PubMed ID: 25325558 [TBL] [Abstract][Full Text] [Related]
7. Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: an MRI-based study. Xerogeanes JW; Hammond KE; Todd DC J Bone Joint Surg Am; 2012 Feb; 94(3):268-76. PubMed ID: 22298060 [TBL] [Abstract][Full Text] [Related]
8. Tibial tunnel defect size as a risk factor in growth arrest following paediatric transphyseal anterior cruciate ligament reconstruction: an anatomical study. Pananwala H; Jabbar Y; Mills L; Symes M; Nandapalan H; Sefton A; Delungahawatte L; Dao Q ANZ J Surg; 2016 Sep; 86(9):691-5. PubMed ID: 27457798 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Growth Plate Violations for Transtibial and Anteromedial Surgical Techniques in Simulated Adolescent Anterior Cruciate Ligament Reconstruction. Kachmar M; Piazza SJ; Bader DA Am J Sports Med; 2016 Feb; 44(2):417-24. PubMed ID: 26684661 [TBL] [Abstract][Full Text] [Related]
10. Anatomical relationship between insertion sites, tunnel placement, and lateral meniscus anterior horn injury during single and double bundle anterior cruciate ligament reconstructions: A comparative macroscopic and histopathological evaluation in cadavers. Oishi K; Sasaki E; Naraoka T; Kimura Y; Tsuda E; Shimoda H; Ishibashi Y J Orthop Sci; 2019 May; 24(3):494-500. PubMed ID: 30446333 [TBL] [Abstract][Full Text] [Related]
11. The influence of femoral technique for graft placement on anterior cruciate ligament reconstruction using a skeletally immature canine model with a rapidly growing physis. Chudik S; Beasley L; Potter H; Wickiewicz T; Warren R; Rodeo S Arthroscopy; 2007 Dec; 23(12):1309-1319.e1. PubMed ID: 18063175 [TBL] [Abstract][Full Text] [Related]
12. Magnetic Resonance Imaging Evaluation of Physeal Violation in Adolescents After Transphyseal Anterior Cruciate Ligament Reconstruction. Wang JH; Son KM; Lee DH Arthroscopy; 2017 Jun; 33(6):1211-1218. PubMed ID: 28159425 [TBL] [Abstract][Full Text] [Related]
13. Hybrid anterior cruciate ligament reconstruction: introduction of a new technique for anatomic anterior cruciate ligament reconstruction. Frank DA; Altman GT; Re P Arthroscopy; 2007 Dec; 23(12):1354.e1-5. PubMed ID: 18063181 [TBL] [Abstract][Full Text] [Related]
14. Magnetic resonance imaging evaluation of knee kinematics after anterior cruciate ligament reconstruction with anteromedial and transtibial femoral tunnel drilling techniques. Schairer WW; Haughom BD; Morse LJ; Li X; Ma CB Arthroscopy; 2011 Dec; 27(12):1663-70. PubMed ID: 21958672 [TBL] [Abstract][Full Text] [Related]
16. Anterior cruciate ligament bundle insertions vary between ACL-rupture and non-injured knees. Dimitriou D; Zou D; Wang Z; Helmy N; Tsai TY Knee Surg Sports Traumatol Arthrosc; 2021 Apr; 29(4):1164-1172. PubMed ID: 32613337 [TBL] [Abstract][Full Text] [Related]
17. Anterior cruciate ligament reconstruction with and without computer navigation: a clinical and magnetic resonance imaging evaluation 2 years after surgery. Endele D; Jung C; Becker U; Bauer G; Mauch F Arthroscopy; 2009 Oct; 25(10):1067-74. PubMed ID: 19801284 [TBL] [Abstract][Full Text] [Related]
18. Can a tibial tunnel in ACL surgery be placed anatomically without impinging on the femoral notch? A risk factor analysis. Van der Bracht H; Bellemans J; Victor J; Verhelst L; Page B; Verdonk P Knee Surg Sports Traumatol Arthrosc; 2014 Feb; 22(2):291-7. PubMed ID: 23338664 [TBL] [Abstract][Full Text] [Related]
19. Reconstruction of the anterior cruciate ligament using a double bundle. Hara K; Kubo T; Suginoshita T; Shimizu C; Hirasawa Y Arthroscopy; 2000 Nov; 16(8):860-4. PubMed ID: 11078547 [TBL] [Abstract][Full Text] [Related]
20. The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child. Lo IK; Kirkley A; Fowler PJ; Miniaci A Arthroscopy; 1997 Oct; 13(5):627-34. PubMed ID: 9343653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]