BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19962366)

  • 1. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity.
    Pei Z; Anderson H; Myrskog A; Dunér G; Ingemarsson B; Aastrup T
    Anal Biochem; 2010 Mar; 398(2):161-8. PubMed ID: 19962366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a high-performance immunolatex based on "soft landing" antibody immobilization mechanism.
    Yuan X; Fabregat D; Yoshimoto K; Nagasaki Y
    Colloids Surf B Biointerfaces; 2012 Nov; 99():45-52. PubMed ID: 22005261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of antibody immobilization for on-line or off-line immunoaffinity chromatography.
    Beyer NH; Hansen MZ; Schou C; Højrup P; Heegaard NH
    J Sep Sci; 2009 May; 32(10):1592-604. PubMed ID: 19472285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity.
    Tajima N; Takai M; Ishihara K
    Anal Chem; 2011 Mar; 83(6):1969-76. PubMed ID: 21338074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oriented surface immobilization of antibodies at the conserved nucleotide binding site for enhanced antigen detection.
    Alves NJ; Kiziltepe T; Bilgicer B
    Langmuir; 2012 Jun; 28(25):9640-8. PubMed ID: 22612330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface packing density of interfacially adsorbed monoclonal antibody on the binding of hormonal antigen human chorionic gonadotrophin.
    Xu H; Lu JR; Williams DE
    J Phys Chem B; 2006 Feb; 110(4):1907-14. PubMed ID: 16471762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups.
    Mouri M; Ikawa T; Narita M; Hoshino F; Watanabe O
    Macromol Biosci; 2010 Jun; 10(6):612-20. PubMed ID: 20191591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectrocatalytic signaling from immunosensors with back-filling immobilization of glucose oxidase on biorecognition surfaces.
    Won BY; Choi HG; Kim KH; Byun SY; Kim HS; Yoon HC
    Biotechnol Bioeng; 2005 Mar; 89(7):815-21. PubMed ID: 15688358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of antibody immobilization using hyperbranched polymer and protein A.
    Shen G; Cai C; Wang K; Lu J
    Anal Biochem; 2011 Feb; 409(1):22-7. PubMed ID: 20869942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the structural conformation of monoclonal antibody layers and antigen binding capacity.
    Xu H; Zhao X; Lu JR; Williams DE
    Biomacromolecules; 2007 Aug; 8(8):2422-8. PubMed ID: 17616226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplification of the antigen-antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface.
    Tang DQ; Zhang DJ; Tang DY; Ai H
    J Immunol Methods; 2006 Oct; 316(1-2):144-52. PubMed ID: 17027021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications.
    Mahmoudifard M; Soudi S; Soleimani M; Hosseinzadeh S; Esmaeili E; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():586-94. PubMed ID: 26478348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented immobilization of antibodies through different surface regions containing amino groups: Selective immobilization through the bottom of the Fc region.
    Gao S; Rojas-Vega F; Rocha-Martin J; Guisán JM
    Int J Biol Macromol; 2021 Apr; 177():19-28. PubMed ID: 33607135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody immobilization technique using protein film for high stability and orientation control of the immobilized antibody.
    Yamazoe H
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():209-214. PubMed ID: 30948054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization.
    Raghav R; Srivastava S
    Biosens Bioelectron; 2016 Apr; 78():396-403. PubMed ID: 26655179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and quality control of silver nanoparticle-antibody conjugate for use in electrochemical immunoassays.
    Szymanski MS; Porter RA
    J Immunol Methods; 2013 Jan; 387(1-2):262-9. PubMed ID: 23153725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide.
    Jung Y; Kang HJ; Lee JM; Jung SO; Yun WS; Chung SJ; Chung BH
    Anal Biochem; 2008 Mar; 374(1):99-105. PubMed ID: 18023402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunosensing based on site-directed immobilization of antibody fragments and polymers that reduce nonspecific binding.
    Vikholm-Lundin I
    Langmuir; 2005 Jul; 21(14):6473-7. PubMed ID: 15982055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of scFv-immobilized quartz crystal microbalance sensor by PS-tag-mediated solid-phase refolding.
    Kumada Y; Sasaki E; Kishimoto M
    J Biosci Bioeng; 2011 Apr; 111(4):459-64. PubMed ID: 21215695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group.
    Kim WJ; Kim S; Lee BS; Kim A; Ah CS; Huh C; Sung GY; Yun WS
    Langmuir; 2009 Oct; 25(19):11692-7. PubMed ID: 19788222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.