These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19962441)

  • 1. Group specific optimisation of fMRI processing steps for child and adult data.
    Evans JW; Todd RM; Taylor MJ; Strother SC
    Neuroimage; 2010 Apr; 50(2):479-90. PubMed ID: 19962441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comment on the severity of the effects of non-white noise in fMRI time-series.
    Smith AT; Singh KD; Balsters JH
    Neuroimage; 2007 Jun; 36(2):282-8. PubMed ID: 17098446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: Improved sensitivity and specificity by means of a motion-compensating general linear model analysis.
    Figley CR; Stroman PW
    Neuroimage; 2009 Jan; 44(2):421-7. PubMed ID: 18835581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual echo approach to removing motion artefacts in fMRI time series.
    Buur PF; Poser BA; Norris DG
    NMR Biomed; 2009 Jun; 22(5):551-60. PubMed ID: 19259989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity: studying nonlinear, delayed interactions between BOLD signals.
    Lahaye PJ; Poline JB; Flandin G; Dodel S; Garnero L
    Neuroimage; 2003 Oct; 20(2):962-74. PubMed ID: 14568466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex.
    Hoeller M; Krings T; Reinges MH; Hans FJ; Gilsbach JM; Thron A
    Acta Neurochir (Wien); 2002 Mar; 144(3):279-84; discussion 284. PubMed ID: 11956941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of FMRI data with drift: modified general linear model and Bayesian estimator.
    Luo H; Puthusserypady S
    IEEE Trans Biomed Eng; 2008 May; 55(5):1504-11. PubMed ID: 18440896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Data processing of functional magnetic resonance of brain based on statistical parametric mapping].
    Li W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):477-80. PubMed ID: 17591287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local linear discriminant analysis (LLDA) for group and region of interest (ROI)-based fMRI analysis.
    McKeown MJ; Li J; Huang X; Lewis MM; Rhee S; Young Truong KN; Wang ZJ
    Neuroimage; 2007 Sep; 37(3):855-65. PubMed ID: 17627850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machines for temporal classification of block design fMRI data.
    LaConte S; Strother S; Cherkassky V; Anderson J; Hu X
    Neuroimage; 2005 Jun; 26(2):317-29. PubMed ID: 15907293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
    Faisan S; Thoraval L; Armspach JP; Foucher JR; Metz-Lutz MN; Heitz F
    Acad Radiol; 2005 Jan; 12(1):25-36. PubMed ID: 15691723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-independent method for fMRI analysis.
    Soltanian-Zadeh H; Peck DJ; Hearshen DO; Lajiness-O'Neill RR
    IEEE Trans Med Imaging; 2004 Mar; 23(3):285-96. PubMed ID: 15027521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
    Thirion B; Pinel P; Tucholka A; Roche A; Ciuciu P; Mangin JF; Poline JB
    IEEE Trans Med Imaging; 2007 Sep; 26(9):1256-69. PubMed ID: 17896597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying head motion associated with motor tasks used in fMRI.
    Seto E; Sela G; McIlroy WE; Black SE; Staines WR; Bronskill MJ; McIntosh AR; Graham SJ
    Neuroimage; 2001 Aug; 14(2):284-97. PubMed ID: 11467903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of spatial smoothing on fMRI group inferences.
    Mikl M; Marecek R; Hlustík P; Pavlicová M; Drastich A; Chlebus P; Brázdil M; Krupa P
    Magn Reson Imaging; 2008 May; 26(4):490-503. PubMed ID: 18060720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.
    Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC
    Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Images-based suppression of unwanted global signals in resting-state functional connectivity studies.
    Giove F; Gili T; Iacovella V; Macaluso E; Maraviglia B
    Magn Reson Imaging; 2009 Oct; 27(8):1058-64. PubMed ID: 19695814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based attenuation of movement artifacts in fMRI.
    Lemmin T; Ganesh G; Gassert R; Burdet E; Kawato M; Haruno M
    J Neurosci Methods; 2010 Sep; 192(1):58-69. PubMed ID: 20654648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.