These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 19962755)
1. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Wang L; Wang ZH; Shen CY; You ML; Xiao JF; Chen GQ Biomaterials; 2010 Mar; 31(7):1691-8. PubMed ID: 19962755 [TBL] [Abstract][Full Text] [Related]
2. Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. You M; Peng G; Li J; Ma P; Wang Z; Shu W; Peng S; Chen GQ Biomaterials; 2011 Mar; 32(9):2305-13. PubMed ID: 21190731 [TBL] [Abstract][Full Text] [Related]
3. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Xu XY; Li XT; Peng SW; Xiao JF; Liu C; Fang G; Chen KC; Chen GQ Biomaterials; 2010 May; 31(14):3967-75. PubMed ID: 20153524 [TBL] [Abstract][Full Text] [Related]
4. Growth of human umbilical cord Wharton's Jelly-derived mesenchymal stem cells on the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). Ji GZ; Wei X; Chen GQ J Biomater Sci Polym Ed; 2009; 20(3):325-39. PubMed ID: 19192359 [TBL] [Abstract][Full Text] [Related]
5. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds. Haimi S; Suuriniemi N; Haaparanta AM; Ellä V; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Kellomäki M; Miettinen S; Suuronen R Tissue Eng Part A; 2009 Jul; 15(7):1473-80. PubMed ID: 19072198 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Hu YJ; Wei X; Zhao W; Liu YS; Chen GQ Acta Biomater; 2009 May; 5(4):1115-25. PubMed ID: 18976972 [TBL] [Abstract][Full Text] [Related]
7. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study. Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051 [TBL] [Abstract][Full Text] [Related]
8. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Holmes B; Castro NJ; Li J; Keidar M; Zhang LG Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974 [TBL] [Abstract][Full Text] [Related]
9. Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Ji Y; Li XT; Chen GQ Biomaterials; 2008 Oct; 29(28):3807-14. PubMed ID: 18597841 [TBL] [Abstract][Full Text] [Related]
10. Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Soleimani M; Nadri S; Shabani I Int J Dev Biol; 2010; 54(8-9):1295-300. PubMed ID: 20857376 [TBL] [Abstract][Full Text] [Related]
11. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
12. Poly-ε-caprolactone composite scaffolds for bone repair. Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350 [TBL] [Abstract][Full Text] [Related]
13. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. Bagher Z; Ebrahimi-Barough S; Azami M; Safa M; Joghataei MT J Biomed Mater Res A; 2016 Jan; 104(1):218-26. PubMed ID: 26265047 [TBL] [Abstract][Full Text] [Related]
14. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
15. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines. Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087 [TBL] [Abstract][Full Text] [Related]
16. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Wang YW; Wu Q; Chen GQ Biomaterials; 2004 Feb; 25(4):669-75. PubMed ID: 14607505 [TBL] [Abstract][Full Text] [Related]
17. Poly-L-lactide acid-modified scaffolds for osteoinduction and osteoconduction. Bosetti M; Fusaro L; Nicolì E; Borrone A; Aprile S; Cannas M J Biomed Mater Res A; 2014 Oct; 102(10):3531-9. PubMed ID: 24178410 [TBL] [Abstract][Full Text] [Related]
18. [Effect of polymeric scaffolds on attachment and growth of bone marrow mesenchymal stem cells]. Ren J; Jia X; Wang S; Wu Z; Pan K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1185-8. PubMed ID: 16422095 [TBL] [Abstract][Full Text] [Related]
19. PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering. Su Z; Li P; Wu B; Ma H; Wang Y; Liu G; Zeng H; Li Z; Wei X Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():374-82. PubMed ID: 25491842 [TBL] [Abstract][Full Text] [Related]
20. Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Zurita M; Otero L; Aguayo C; Bonilla C; Ferreira E; Parajón A; Vaquero J Cytotherapy; 2010 Jul; 12(4):522-37. PubMed ID: 20465485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]