BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 19962880)

  • 1. Multiple linear regression model for predicting biomass digestibility from structural features.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2010 Jul; 101(13):4971-9. PubMed ID: 19962880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features affecting biomass enzymatic digestibility.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2008 Jun; 99(9):3817-28. PubMed ID: 17826088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network prediction of biomass digestibility based on structural features.
    O'Dwyer JP; Zhu L; Granda CB; Chang VS; Holtzapple MT
    Biotechnol Prog; 2008; 24(2):283-92. PubMed ID: 18220407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model.
    O'Dwyer JP; Zhu L; Granda CB; Holtzapple MT
    Bioresour Technol; 2007 Nov; 98(16):2969-77. PubMed ID: 17140790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings.
    Sathitsuksanoh N; Zhu Z; Ho TJ; Bai MD; Zhang YH
    Bioresour Technol; 2010 Jul; 101(13):4926-9. PubMed ID: 19854047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2004 Apr; 86(1):88-95. PubMed ID: 15007845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin.
    Lin L; Yan R; Liu Y; Jiang W
    Bioresour Technol; 2010 Nov; 101(21):8217-23. PubMed ID: 20639116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.
    Laureano-Perez L; Dale BE; Zhu L; O'Dwyer JP; Holtzapple M
    Biotechnol Prog; 2006; 22(3):835-41. PubMed ID: 16739968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass.
    Ju X; Engelhard M; Zhang X
    Bioresour Technol; 2013 Mar; 132():137-45. PubMed ID: 23395766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids.
    Zhao H; Baker GA; Cowins JV
    Biotechnol Prog; 2010; 26(1):127-33. PubMed ID: 19918908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia.
    Rollin JA; Zhu Z; Sathitsuksanoh N; Zhang YH
    Biotechnol Bioeng; 2011 Jan; 108(1):22-30. PubMed ID: 20812260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose and hemicelluloses recovery from grape stalks.
    Spigno G; Pizzorno T; De Faveri DM
    Bioresour Technol; 2008 Jul; 99(10):4329-37. PubMed ID: 17935982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractionation of corn stover by hot-water and aqueous ammonia treatment.
    Kim TH; Lee YY
    Bioresour Technol; 2006 Jan; 97(2):224-32. PubMed ID: 16171679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse.
    Hashmi M; Sun Q; Tao J; Wells T; Shah AA; Labbé N; Ragauskas AJ
    Bioresour Technol; 2017 Jan; 224():714-720. PubMed ID: 27864135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of structural features on enzyme digestibility of corn stover.
    Kim S; Holtzapple MT
    Bioresour Technol; 2006 Mar; 97(4):583-91. PubMed ID: 15961307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse.
    Qiu Z; Aita GM; Walker MS
    Bioresour Technol; 2012 Aug; 117():251-6. PubMed ID: 22617034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.
    Li C; Knierim B; Manisseri C; Arora R; Scheller HV; Auer M; Vogel KP; Simmons BA; Singh S
    Bioresour Technol; 2010 Jul; 101(13):4900-6. PubMed ID: 19945861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass.
    Kadam KL; Rydholm EC; McMillan JD
    Biotechnol Prog; 2004; 20(3):698-705. PubMed ID: 15176871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.
    Moxley G; Zhu Z; Zhang YH
    J Agric Food Chem; 2008 Sep; 56(17):7885-90. PubMed ID: 18702466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.