These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19962887)

  • 1. Carboxymethyl-beta-cyclodextrin mitigates toxicity of cadmium, cobalt, and copper during naphthalene biodegradation.
    Hoffman DR; Anderson PP; Schubert CM; Gault MB; Blanford WJ; Sandrin TR
    Bioresour Technol; 2010 Apr; 101(8):2672-7. PubMed ID: 19962887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubility enhancement of seven metal contaminants using carboxymethyl-beta-cyclodextrin (CMCD).
    Skold ME; Thyne GD; Drexler JW; McCray JE
    J Contam Hydrol; 2009 Jul; 107(3-4):108-13. PubMed ID: 19487046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation.
    Hoffman DR; Okon JL; Sandrin TR
    Chemosphere; 2005 May; 59(7):919-27. PubMed ID: 15823325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative.
    Chatain V; Hanna K; de Brauer C; Bayard R; Germain P
    Chemosphere; 2004 Oct; 57(3):197-206. PubMed ID: 15312736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils.
    Jiradecha C; Urgun-Demirtas M; Pagilla K
    J Hazard Mater; 2006 Aug; 136(1):61-7. PubMed ID: 16359784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation.
    Sandrint TR; Maier RM
    Environ Toxicol Chem; 2002 Oct; 21(10):2075-9. PubMed ID: 12371483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins.
    Lindsey ME; Xu G; Lu J; Tarr MA
    Sci Total Environ; 2003 May; 307(1-3):215-29. PubMed ID: 12711436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rhizosphere strain of Pseudomonas chlororaphis capable of degrading naphthalene in the presence of cobalt/nickel].
    Siunova TV; Anokhina TO; Mashukova AV; Kochetkov VV; Borodin AM
    Mikrobiologiia; 2007; 76(2):212-8. PubMed ID: 17583218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation.
    Sandrin TR; Chech AM; Maier RM
    Appl Environ Microbiol; 2000 Oct; 66(10):4585-8. PubMed ID: 11010924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of lead, copper, and cadmium by Phanerochaete chrysosporium in ternary metal mixtures: statistical analysis of individual and interaction effects.
    Pakshirajan K; Swaminathan T
    Appl Biochem Biotechnol; 2009 Aug; 158(2):457-69. PubMed ID: 19156371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca.
    Shuhaimi-Othman M; Pascoe D
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):29-35. PubMed ID: 16647753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor.
    Collina E; Bestetti G; Di Gennaro P; Franzetti A; Gugliersi F; Lasagni M; Pitea D
    Environ Int; 2005 Feb; 31(2):167-71. PubMed ID: 15661278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water.
    Matsuo AY; Wood CM; Val AL
    Aquat Toxicol; 2005 Sep; 74(4):351-64. PubMed ID: 16051381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil.
    Wani PA; Khan MS; Zaidi A
    Bull Environ Contam Toxicol; 2008 Aug; 81(2):152-8. PubMed ID: 18368281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the rate and extent of cadmium and copper desorption from soils in the presence of bacterial extracellular polymer.
    Jensen-Spaulding A; Cabral K; Shuler ML; Lion LW
    Water Res; 2004 May; 38(9):2230-9. PubMed ID: 15142783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-cyclodextrin and its derivatives-enhanced solubility and biodegradation of 2-nitrobiphenyl.
    Cai BC; Gao SX; Lu GF
    J Environ Sci (China); 2006; 18(6):1157-60. PubMed ID: 17294958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phenanthrene and naphthalene by a Burkholderia species strain.
    Kang H; Hwang SY; Kim YM; Kim E; Kim YS; Kim SK; Kim SW; Cerniglia CE; Shuttleworth KL; Zylstra GJ
    Can J Microbiol; 2003 Feb; 49(2):139-44. PubMed ID: 12718402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland.
    Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 1996 Dec; 35(3):242-7. PubMed ID: 9007000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.