These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 1996316)
21. A pre-tRNA carrying intron features typical of Archaea is spliced in yeast. Di Segni G; Borghese L; Sebastiani S; Tocchini-Valentini GP RNA; 2005 Jan; 11(1):70-6. PubMed ID: 15574514 [TBL] [Abstract][Full Text] [Related]
22. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea. Dietrich A; Romby P; Maréchal-Drouard L; Guillemaut P; Giegé R Nucleic Acids Res; 1990 May; 18(9):2589-97. PubMed ID: 2187177 [TBL] [Abstract][Full Text] [Related]
23. Identity of Saccharomyces cerevisiae tRNA(Trp) is not changed by an anticodon mutation that creates an amber suppressor. Yesland KD; Nelson AW; Six Feathers DM; Johnson JD J Biol Chem; 1993 Jan; 268(1):217-20. PubMed ID: 8416930 [TBL] [Abstract][Full Text] [Related]
25. A novel RNA product of the tyrT operon of Escherichia coli. Bösl M; Kersten H Nucleic Acids Res; 1991 Nov; 19(21):5863-70. PubMed ID: 1840671 [TBL] [Abstract][Full Text] [Related]
26. The anticodon loop is a major identity determinant of Saccharomyces cerevisiae tRNA(Leu). Soma A; Kumagai R; Nishikawa K; Himeno H J Mol Biol; 1996 Nov; 263(5):707-14. PubMed ID: 8947570 [TBL] [Abstract][Full Text] [Related]
27. Mischarging mutants of Su+2 glutamine tRNA in E. coli. II. Amino acid specificities of the mutant tRNAs. Yamao F; Inokuchi H; Normanly J; Abelson J; Ozeki H Jpn J Genet; 1988 Jun; 63(3):251-8. PubMed ID: 3078874 [TBL] [Abstract][Full Text] [Related]
28. Recognition of UUN codons by two leucine tRNA species from Escherichia coli. Takai K; Horie N; Yamaizumi Z; Nishimura S; Miyazawa T; Yokoyama S FEBS Lett; 1994 May; 344(1):31-4. PubMed ID: 8181559 [TBL] [Abstract][Full Text] [Related]
29. Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae. Mendenhall MD; Leeds P; Fen H; Mathison L; Zwick M; Sleiziz C; Culbertson MR J Mol Biol; 1987 Mar; 194(1):41-58. PubMed ID: 3039147 [TBL] [Abstract][Full Text] [Related]
30. Recognition system of class II tRNA in Escherichia coli and yeast. Soma A; Himeno H Nucleic Acids Symp Ser; 1997; (37):295-6. PubMed ID: 9586116 [TBL] [Abstract][Full Text] [Related]
31. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Weygand-Durasević I; Nalaskowska M; Söll D J Bacteriol; 1994 Jan; 176(1):232-9. PubMed ID: 8282701 [TBL] [Abstract][Full Text] [Related]
32. Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code. Ohno S; Yokogawa T; Fujii I; Asahara H; Inokuchi H; Nishikawa K J Biochem; 1998 Dec; 124(6):1065-8. PubMed ID: 9832608 [TBL] [Abstract][Full Text] [Related]
33. Expanding the genetic code of Escherichia coli. Wang L; Brock A; Herberich B; Schultz PG Science; 2001 Apr; 292(5516):498-500. PubMed ID: 11313494 [TBL] [Abstract][Full Text] [Related]
34. Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNA(Tyr) are conserved but expressed differently. Fechter P; Rudinger-Thirion J; Tukalo M; Giegé R Eur J Biochem; 2001 Feb; 268(3):761-7. PubMed ID: 11168416 [TBL] [Abstract][Full Text] [Related]
35. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression. Steege DA Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015 [TBL] [Abstract][Full Text] [Related]
36. Sequence of a new tRNA(Leu)(U*AA) from brewer's yeast. el Adlouni C; Desgrès J; Dirheimer G; Keith G Biochimie; 1991 Nov; 73(11):1355-60. PubMed ID: 1799629 [TBL] [Abstract][Full Text] [Related]
37. Characterization of serine and leucine tRNAs in an asporogenic yeast Candida cylindracea and evolutionary implications of genes for tRNA(Ser)CAG responsible for translation of a non-universal genetic code. Suzuki T; Ueda T; Yokogawa T; Nishikawa K; Watanabe K Nucleic Acids Res; 1994 Jan; 22(2):115-23. PubMed ID: 8121794 [TBL] [Abstract][Full Text] [Related]
38. Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules. Larkin DC; Williams AM; Martinis SA; Fox GE Nucleic Acids Res; 2002 May; 30(10):2103-13. PubMed ID: 12000830 [TBL] [Abstract][Full Text] [Related]
39. Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Kraemer KH; Seidman MM Mutat Res; 1989; 220(2-3):61-72. PubMed ID: 2494447 [TBL] [Abstract][Full Text] [Related]
40. Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae. Cleary JD; Mangroo D Biochem J; 2000 Apr; 347 Pt 1(Pt 1):115-22. PubMed ID: 10727409 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]