These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 19963236)

  • 1. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna.
    Zhu X; Chang Y; Chen Y
    Chemosphere; 2010 Jan; 78(3):209-15. PubMed ID: 19963236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.
    Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R
    Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna.
    Das P; Xenopoulos MA; Metcalfe CD
    Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna.
    Fan W; Cui M; Liu H; Wang C; Shi Z; Tan C; Yang X
    Environ Pollut; 2011 Mar; 159(3):729-34. PubMed ID: 21177008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain.
    Zhu X; Wang J; Zhang X; Chang Y; Chen Y
    Chemosphere; 2010 May; 79(9):928-33. PubMed ID: 20371096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO₂ nanoparticles.
    Wang J; Zhu X; Zhang X; Zhao Z; Liu H; George R; Wilson-Rawls J; Chang Y; Chen Y
    Chemosphere; 2011 Apr; 83(4):461-7. PubMed ID: 21239038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction.
    Kim KT; Klaine SJ; Cho J; Kim SH; Kim SD
    Sci Total Environ; 2010 Apr; 408(10):2268-72. PubMed ID: 20153877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chronic toxicity of the crystalline forms of TiO
    Liu S; Zeng P; Li X; Thuyet DQ; Fan W
    Ecotoxicol Environ Saf; 2019 Oct; 181():292-300. PubMed ID: 31201961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions.
    Poynton HC; Lazorchak JM; Impellitteri CA; Smith ME; Rogers K; Patra M; Hammer KA; Allen HJ; Vulpe CD
    Environ Sci Technol; 2011 Jan; 45(2):762-8. PubMed ID: 21142172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna.
    Muyssen BT; De Schamphelaere KA; Janssen CR
    Aquat Toxicol; 2006 May; 77(4):393-401. PubMed ID: 16472524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle toxicity in Daphnia magna reproduction studies: the importance of test design.
    Seitz F; Bundschuh M; Rosenfeldt RR; Schulz R
    Aquat Toxicol; 2013 Jan; 126():163-8. PubMed ID: 23202250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60).
    Baun A; Sørensen SN; Rasmussen RF; Hartmann NB; Koch CB
    Aquat Toxicol; 2008 Feb; 86(3):379-87. PubMed ID: 18190976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of the crude oil water-soluble fraction and kaolin-adsorbed crude oil on Daphnia magna (Crustacea: Anomopoda).
    Martínez-Jerónimo F; Villaseñor R; Ríos G; Espinosa-Chavez F
    Arch Environ Contam Toxicol; 2005 May; 48(4):444-9. PubMed ID: 15883675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel.
    Evens R; De Schamphelaere KA; Balcaen L; Wang Y; De Roy K; Resano M; Flórez M; Boon N; Vanhaecke F; Janssen CR
    Aquat Toxicol; 2012 Mar; 109():80-9. PubMed ID: 22210497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route.
    Fouqueray M; Dufils B; Vollat B; Chaurand P; Botta C; Abacci K; Labille J; Rose J; Garric J
    Environ Pollut; 2012 Apr; 163():55-61. PubMed ID: 22325431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.
    Campos B; Rivetti C; Rosenkranz P; Navas JM; Barata C
    Aquat Toxicol; 2013 Apr; 130-131():174-83. PubMed ID: 23416410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna.
    Dabrunz A; Duester L; Prasse C; Seitz F; Rosenfeldt R; Schilde C; Schaumann GE; Schulz R
    PLoS One; 2011; 6(5):e20112. PubMed ID: 21647422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of two pulsed metal exposures to Daphnia magna: relative effects of pulsed duration-concentration and influence of interpulse period.
    Hoang TC; Gallagher JS; Tomasso JR; Klaine SJ
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):579-89. PubMed ID: 17690832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biology-based dynamic approach for the reconciliation of acute and chronic toxicity tests: application to Daphnia magna.
    Zaldívar JM; Baraibar J
    Chemosphere; 2011 Mar; 82(11):1547-55. PubMed ID: 21168184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.