BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19963384)

  • 1. Discovery of 3,6-dihydro-2H-pyran as a morpholine replacement in 6-aryl-1H-pyrazolo[3,4-d]pyrimidines and 2-arylthieno[3,2-d]pyrimidines: ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR).
    Kaplan J; Verheijen JC; Brooijmans N; Toral-Barza L; Hollander I; Yu K; Zask A
    Bioorg Med Chem Lett; 2010 Jan; 20(2):640-3. PubMed ID: 19963384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrazolopyrimidines as highly potent and selective, ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): optimization of the 1-substituent.
    Curran KJ; Verheijen JC; Kaplan J; Richard DJ; Toral-Barza L; Hollander I; Lucas J; Ayral-Kaloustian S; Yu K; Zask A
    Bioorg Med Chem Lett; 2010 Feb; 20(4):1440-4. PubMed ID: 20089401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of 4-morpholino-6-aryl-1H-pyrazolo[3,4-d]pyrimidines as highly potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): optimization of the 6-aryl substituent.
    Verheijen JC; Richard DJ; Curran K; Kaplan J; Lefever M; Nowak P; Malwitz DJ; Brooijmans N; Toral-Barza L; Zhang WG; Lucas J; Hollander I; Ayral-Kaloustian S; Mansour TS; Yu K; Zask A
    J Med Chem; 2009 Dec; 52(24):8010-24. PubMed ID: 19894727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of 2-arylthieno[3,2-d]pyrimidines containing 8-oxa-3-azabi-cyclo[3.2.1]octane in the 4-position as potent inhibitors of mTOR with selectivity over PI3K.
    Verheijen JC; Yu K; Toral-Barza L; Hollander I; Zask A
    Bioorg Med Chem Lett; 2010 Jan; 20(1):375-9. PubMed ID: 19897362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-competitive inhibitors of the mammalian target of rapamycin: design and synthesis of highly potent and selective pyrazolopyrimidines.
    Zask A; Verheijen JC; Curran K; Kaplan J; Richard DJ; Nowak P; Malwitz DJ; Brooijmans N; Bard J; Svenson K; Lucas J; Toral-Barza L; Zhang WG; Hollander I; Gibbons JJ; Abraham RT; Ayral-Kaloustian S; Mansour TS; Yu K
    J Med Chem; 2009 Aug; 52(16):5013-6. PubMed ID: 19645448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of 2-ureidophenyltriazines bearing bridged morpholines as potent and selective ATP-competitive mTOR inhibitors.
    Zask A; Verheijen JC; Richard DJ; Kaplan J; Curran K; Toral-Barza L; Lucas J; Hollander I; Yu K
    Bioorg Med Chem Lett; 2010 Apr; 20(8):2644-7. PubMed ID: 20227881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel purine and pyrazolo[3,4-d]pyrimidine inhibitors of PI3 kinase-alpha: Hit to lead studies.
    Gilbert AM; Nowak P; Brooijmans N; Bursavich MG; Dehnhardt C; Santos ED; Feldberg LR; Hollander I; Kim S; Lombardi S; Park K; Venkatesan AM; Mallon R
    Bioorg Med Chem Lett; 2010 Jan; 20(2):636-9. PubMed ID: 19969455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morpholine derivatives greatly enhance the selectivity of mammalian target of rapamycin (mTOR) inhibitors.
    Zask A; Kaplan J; Verheijen JC; Richard DJ; Curran K; Brooijmans N; Bennett EM; Toral-Barza L; Hollander I; Ayral-Kaloustian S; Yu K
    J Med Chem; 2009 Dec; 52(24):7942-5. PubMed ID: 19916508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel imidazolopyrimidines as dual PI3-Kinase/mTOR inhibitors.
    Venkatesan AM; Dehnhardt CM; Chen Z; Santos ED; Dos Santos O; Bursavich M; Gilbert AM; Ellingboe JW; Ayral-Kaloustian S; Khafizova G; Brooijmans N; Mallon R; Hollander I; Feldberg L; Lucas J; Yu K; Gibbons J; Abraham R; Mansour TS
    Bioorg Med Chem Lett; 2010 Jan; 20(2):653-6. PubMed ID: 19954970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the development of selective, ATP-competitive inhibitors of mTOR.
    Richard DJ; Verheijen JC; Zask A
    Curr Opin Drug Discov Devel; 2010 Jul; 13(4):428-40. PubMed ID: 20597028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,4-Diaminopyrimidine MK2 inhibitors. Part I: Observation of an unexpected inhibitor binding mode.
    Argiriadi MA; Ericsson AM; Harris CM; Banach DL; Borhani DW; Calderwood DJ; Demers MD; Dimauro J; Dixon RW; Hardman J; Kwak S; Li B; Mankovich JA; Marcotte D; Mullen KD; Ni B; Pietras M; Sadhukhan R; Sousa S; Tomlinson MJ; Wang L; Xiang T; Talanian RV
    Bioorg Med Chem Lett; 2010 Jan; 20(1):330-3. PubMed ID: 19919896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and optimization of 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxybenzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR).
    Tsou HR; MacEwan G; Birnberg G; Grosu G; Bursavich MG; Bard J; Brooijmans N; Toral-Barza L; Hollander I; Mansour TS; Ayral-Kaloustian S; Yu K
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2321-5. PubMed ID: 20188552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of water-solubilizing groups in pyrazolopyrimidine mTOR inhibitors: discovery of highly potent and selective analogs with improved human microsomal stability.
    Richard DJ; Verheijen JC; Curran K; Kaplan J; Toral-Barza L; Hollander I; Lucas J; Yu K; Zask A
    Bioorg Med Chem Lett; 2009 Dec; 19(24):6830-5. PubMed ID: 19896845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-Substituted-7-azaindoles bearing a ureidobenzofuranone moiety as potent and selective, ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR).
    Tsou HR; MacEwan G; Birnberg G; Zhang N; Brooijmans N; Toral-Barza L; Hollander I; Ayral-Kaloustian S; Yu K
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2259-63. PubMed ID: 20188551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triazines incorporating (R)-3-methylmorpholine are potent inhibitors of the mammalian target of rapamycin (mTOR) with selectivity over PI3Kalpha.
    Richard DJ; Verheijen JC; Yu K; Zask A
    Bioorg Med Chem Lett; 2010 Apr; 20(8):2654-7. PubMed ID: 20223664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of potent and selective inhibitors of the mammalian target of rapamycin (mTOR) kinase.
    Nowak P; Cole DC; Brooijmans N; Bursavich MG; Curran KJ; Ellingboe JW; Gibbons JJ; Hollander I; Hu Y; Kaplan J; Malwitz DJ; Toral-Barza L; Verheijen JC; Zask A; Zhang WG; Yu K
    J Med Chem; 2009 Nov; 52(22):7081-9. PubMed ID: 19848404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor.
    Heffron TP; Berry M; Castanedo G; Chang C; Chuckowree I; Dotson J; Folkes A; Gunzner J; Lesnick JD; Lewis C; Mathieu S; Nonomiya J; Olivero A; Pang J; Peterson D; Salphati L; Sampath D; Sideris S; Sutherlin DP; Tsui V; Wan NC; Wang S; Wong S; Zhu BY
    Bioorg Med Chem Lett; 2010 Apr; 20(8):2408-11. PubMed ID: 20346656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of (thienopyrimidin-2-yl)aminopyrimidines as potent, selective, and orally available pan-PI3-kinase and dual pan-PI3-kinase/mTOR inhibitors for the treatment of cancer.
    Sutherlin DP; Sampath D; Berry M; Castanedo G; Chang Z; Chuckowree I; Dotson J; Folkes A; Friedman L; Goldsmith R; Heffron T; Lee L; Lesnick J; Lewis C; Mathieu S; Nonomiya J; Olivero A; Pang J; Prior WW; Salphati L; Sideris S; Tian Q; Tsui V; Wan NC; Wang S; Wiesmann C; Wong S; Zhu BY
    J Med Chem; 2010 Feb; 53(3):1086-97. PubMed ID: 20050669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the putative binding conformation of a pyrazolopyridine class of inhibitors of MAPKAPK2 using computational studies.
    Miglani R; Cliffe IA; Voleti SR
    Eur J Med Chem; 2010 Jan; 45(1):98-105. PubMed ID: 19850376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and evaluation of pyrazolo[1,5-a]pyrimidines as neuropeptide Y1 receptor antagonists.
    Griffith DA; Hargrove DM; Maurer TS; Blum CA; De Lombaert S; Inthavongsay JK; Klade LE; Mack CM; Rose CR; Sanders MJ; Carpino PA
    Bioorg Med Chem Lett; 2011 May; 21(9):2641-5. PubMed ID: 21295475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.