BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19963427)

  • 1. The suspensor: not just suspending the embryo.
    Kawashima T; Goldberg RB
    Trends Plant Sci; 2010 Jan; 15(1):23-30. PubMed ID: 19963427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning.
    Supena ED; Winarto B; Riksen T; Dubas E; van Lammeren A; Offringa R; Boutilier K; Custers J
    J Exp Bot; 2008; 59(4):803-14. PubMed ID: 18272920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A promoter from the loblolly pine PtNIP1;1 gene directs expression in an early-embryogenesis and suspensor-specific fashion.
    Ciavatta VT; Egertsdotter U; Clapham D; von Arnold S; Cairney J
    Planta; 2002 Aug; 215(4):694-8. PubMed ID: 12172854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis.
    Vernon DM; Meinke DW
    Dev Biol; 1994 Oct; 165(2):566-73. PubMed ID: 7958422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alpha-N-acetyl-glucosaminidase gene is transcriptionally activated in male and female gametes prior to fertilization and is essential for seed development in Arabidopsis.
    Ronceret A; Gadea-Vacas J; Guilleminot J; Devic M
    J Exp Bot; 2008; 59(13):3649-59. PubMed ID: 18782908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using giant scarlet runner bean embryos to uncover regulatory networks controlling suspensor gene activity.
    Henry KF; Goldberg RB
    Front Plant Sci; 2015; 6():44. PubMed ID: 25705214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of two genes encoding gibberellin 2- and 3-oxidases in developing seeds of Phaseolus coccineus.
    Solfanelli C; Ceron F; Paolicchi F; Giorgetti L; Geri C; Ceccarelli N; Kamiya Y; Picciarelli P
    Plant Cell Physiol; 2005 Jul; 46(7):1116-24. PubMed ID: 15894806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of programmed cell death in plant embryos.
    Filonova LH; Suárez MF; Bozhkov PV
    Methods Mol Biol; 2008; 427():173-9. PubMed ID: 18370006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed cell death in plant embryogenesis.
    Bozhkov PV; Filonova LH; Suarez MF
    Curr Top Dev Biol; 2005; 67():135-79. PubMed ID: 15949533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed cell death eliminates all but one embryo in a polyembryonic plant seed.
    Filonova LH; von Arnold S; Daniel G; Bozhkov PV
    Cell Death Differ; 2002 Oct; 9(10):1057-62. PubMed ID: 12232793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A shared
    Henry KF; Bui AQ; Kawashima T; Goldberg RB
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):E5824-E5833. PubMed ID: 29866850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis.
    Santos-Mendoza M; Dubreucq B; Baud S; Parcy F; Caboche M; Lepiniec L
    Plant J; 2008 May; 54(4):608-20. PubMed ID: 18476867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene network analysis in plant development by genomic technologies.
    Wellmer F; Riechmann JL
    Int J Dev Biol; 2005; 49(5-6):745-59. PubMed ID: 16096979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed development and differentiation: a role for metabolic regulation.
    Borisjuk L; Rolletschek H; Radchuk R; Weschke W; Wobus U; Weber H
    Plant Biol (Stuttg); 2004 Jul; 6(4):375-86. PubMed ID: 15248120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tobacco zygotic embryogenesis in vitro: the original cell wall of the zygote is essential for maintenance of cell polarity, the apical-basal axis and typical suspensor formation.
    He YC; He YQ; Qu LH; Sun MX; Yang HY
    Plant J; 2007 Feb; 49(3):515-27. PubMed ID: 17243994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suspensor length determines developmental progression of the embryo in Arabidopsis.
    Babu Y; Musielak T; Henschen A; Bayer M
    Plant Physiol; 2013 Jul; 162(3):1448-58. PubMed ID: 23709666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutational approach to the study of seed development in maize.
    Dolfini S; Consonni G; Viotti C; Dal Prà M; Saltini G; Giulini A; Pilu R; Malgioglio A; Gavazzi G
    J Exp Bot; 2007; 58(5):1197-205. PubMed ID: 17244631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An expanded role for the TWN1 gene in embryogenesis: defects in cotyledon pattern and morphology in the twn1 mutant of Arabidopsis (Brassicaceae).
    Vernon DM; Hannon MJ; Le M; Forsthoefel NR
    Am J Bot; 2001 Apr; 88(4):570-82. PubMed ID: 11302841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The suspensor as a model system to study the mechanism of cell fate specification during early embryogenesis.
    Peng X; Sun MX
    Plant Reprod; 2018 Mar; 31(1):59-65. PubMed ID: 29473100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-genomics dissection of seed dormancy and germination.
    Holdsworth MJ; Finch-Savage WE; Grappin P; Job D
    Trends Plant Sci; 2008 Jan; 13(1):7-13. PubMed ID: 18160329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.