BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19963456)

  • 1. Simulation for optimal design of hand-held surgical robots.
    Zahraee AH; Szewczyk J; Morel G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():270-3. PubMed ID: 19963456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of control modes of a hand-held robot for laparoscopic surgery.
    Tonet O; Focacci F; Piccigallo M; Cavallo F; Uematsu M; Megali G; Dario P
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):429-36. PubMed ID: 17354919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic hand-held surgical device: evaluation of end-effector's kinematics and development of proof-of-concept prototypes.
    Zahraee AH; Szewczyk J; Paik JK; Morel G
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):432-9. PubMed ID: 20879429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze-contingent autofocus system for robotic-assisted minimally invasive surgery.
    Clancy NT; Mylonas GP; Yang GZ; Elson DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5396-9. PubMed ID: 22255557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System design of a hand-held mobile robot for craniotomy.
    Kane G; Eggers G; Boesecke R; Raczkowsky J; Wörn H; Marmulla R; Mühling J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):402-9. PubMed ID: 20426013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Network-Based Minimally Invasive VR Surgery Simulator.
    Tagawa K; Tanaka HT; Kurumi Y; Komori M; Morikawa S
    Stud Health Technol Inform; 2016; 220():403-6. PubMed ID: 27046613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of multi-degrees-of-freedom dexterous modular arm instruments for minimally invasive surgery.
    Cepolina FE; Zoppi M
    Proc Inst Mech Eng H; 2012 Nov; 226(11):827-37. PubMed ID: 23185953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conceptual design of a miniaturized hybrid local actuator for Minimally Invasive Robotic Surgery (MIRS) instruments.
    Saedi S; Mirbagheri A; Farahmand F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2140-3. PubMed ID: 22254761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches.
    Lum MJ; Rosen J; Sinanan MN; Hannaford B
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1440-5. PubMed ID: 16830951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics, telesurgery and telementoring--their position in modern urological laparoscopy.
    Rassweiler J; Frede T
    Arch Esp Urol; 2002; 55(6):610-28. PubMed ID: 12224160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting tool system to minimize soft tissue damage for robot-assisted minimally invasive orthopedic surgery.
    Sugita N; Nakajima Y; Mitsuishi M; Kawata S; Fujiwara K; Abe N; Ozaki T; Suzuki M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):994-1001. PubMed ID: 18051155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery.
    Herman B; Dehez B; Duy KT; Raucent B; Dombre E; Krut S
    Int J Med Robot; 2009 Sep; 5(3):319-26. PubMed ID: 19455594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hand-held robotic instrument for dextrous laparoscopic interventions.
    Piccigallo M; Focacci F; Tonet O; Megali G; Quaglia C; Dario P
    Int J Med Robot; 2008 Dec; 4(4):331-8. PubMed ID: 18803339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel surgical robot design: minimizing the operating envelope within the sterile field.
    Dachs GW; Peine WJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1505-8. PubMed ID: 17946897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collision detection and untangling for surgical robotic manipulators.
    Morvan T; Martinsen M; Reimers M; Samset E; Elle OJ
    Int J Med Robot; 2009 Sep; 5(3):233-42. PubMed ID: 19367614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.
    Kobayashi Y; Sekiguchi Y; Tomono Y; Watanabe H; Toyoda K; Konishi K; Tomikawa M; Ieiri S; Tanoue K; Hashizume M; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():979-83. PubMed ID: 21096985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic surgery systems.
    Dondelinger R
    Biomed Instrum Technol; 2014; 48(1):55-9. PubMed ID: 24548037
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.