BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19963493)

  • 1. Detailed measurements of gastric electrical activity and their implications on inverse solutions.
    Cheng LK; O'Grady G; Du P; Egbuji JU; Windsor JA; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1302-5. PubMed ID: 19963493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of normal and abnormal gastric electrical sources using a potential based inverse method.
    Kim JH; Du P; Cheng LK
    Physiol Meas; 2013 Sep; 34(9):1193-206. PubMed ID: 24137714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1355-8. PubMed ID: 22254568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian inverse methods for spatiotemporal characterization of gastric electrical activity from cutaneous multi-electrode recordings.
    Allegra AB; Gharibans AA; Schamberg GE; Kunkel DC; Coleman TP
    PLoS One; 2019; 14(10):e0220315. PubMed ID: 31609972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Phys Med Biol; 2012 Aug; 57(16):5205-19. PubMed ID: 22842812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
    Kamat AA; Paskaranandavadivel N; Alighaleh S; Cheng LK; Angeli TR
    Ann Biomed Eng; 2020 Apr; 48(4):1407-1418. PubMed ID: 31980997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity.
    Paskaranandavadivel N; Angeli TR; Manson T; Stocker A; McElmurray L; O'Grady G; Abell T; Cheng LK
    Physiol Meas; 2019 Mar; 40(2):025011. PubMed ID: 30754026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of the Recovery Phase of in vivo gastric slow wave recordings.
    Paskaranandavadivel N; Pan X; Du P; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6094-7. PubMed ID: 26737682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated classification of spatiotemporal characteristics of gastric slow wave propagation.
    Paskaranandavadivel N; Gao J; Du P; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7342-5. PubMed ID: 24111441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.
    Kim JH; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Jan; 38(1):177-86. PubMed ID: 19774463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles.
    Han H; Cheng LK; Paskaranandavadivel N
    Neurogastroenterol Motil; 2022 Dec; 34(12):e14422. PubMed ID: 35726361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastric pacing response evaluated with simultaneous electrical and optical mapping.
    Nagahawatte ND; Zhang H; Paskaranandavadivel N; Patton HN; Garrett AS; Angeli-Gordon TR; Nisbet L; Rogers JM; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2224-2227. PubMed ID: 36086523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.