BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19963550)

  • 1. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.
    Soo Y; Sugi M; Nishino M; Yokoi H; Arai T; Kato R; Nakamura T; Ota J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2975-8. PubMed ID: 19963550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of handgrip force using frequency-band technique during fatiguing muscle contraction.
    Soo Y; Sugi M; Yokoi H; Arai T; Nishino M; Kato R; Nakamura T; Ota J
    J Electromyogr Kinesiol; 2010 Oct; 20(5):888-95. PubMed ID: 19837604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurement of force and muscle fatigue using frequency-band wavelet analysis.
    Soo Y; Sugi M; Yokoi H; Arai T; Du R; Ota J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5045-8. PubMed ID: 19163850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the modulation of brain activity associated with handgrip force and fatigue.
    Cao L; Hao D; Rong Y; Zhou Y; Li M; Tian Y
    Technol Health Care; 2015; 23 Suppl 2():S427-33. PubMed ID: 26410509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fatigue Involved Modification Framework for Force Estimation in Fatiguing Contraction.
    Xu L; Chen X; Cao S; Zhang X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2018 Nov; 26(11):2153-2164. PubMed ID: 30281465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhysIOpathology of NEuromuscular function rElated to fatigue in chronic Renal disease in the elderly (PIONEER): study protocol.
    Chatrenet A; Beaune B; Fois A; Pouliquen C; Audebrand JM; Torreggiani M; Paris D; Durand S; Piccoli GB
    BMC Nephrol; 2020 Jul; 21(1):305. PubMed ID: 32711479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.
    Chowdhury SK; Nimbarte AD; Jaridi M; Creese RC
    J Electromyogr Kinesiol; 2013 Oct; 23(5):995-1003. PubMed ID: 23787059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface EMG based muscle fatigue evaluation in biomechanics.
    Cifrek M; Medved V; Tonković S; Ostojić S
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):327-40. PubMed ID: 19285766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of burst superimposed technique to assess central activation failure during fatiguing contraction.
    Dousset E; Jammes Y
    J Electromyogr Kinesiol; 2003 Apr; 13(2):103-11. PubMed ID: 12586516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue induced by intermittent maximal voluntary contractions is associated with significant losses in muscle output but limited reductions in functional MRI-measured brain activation level.
    Liu JZ; Zhang L; Yao B; Sahgal V; Yue GH
    Brain Res; 2005 Apr; 1040(1-2):44-54. PubMed ID: 15804425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possibility of intrinsic muscle contractile properties in force summation and postactivation potentiation as indices of maximal muscle strength and muscle fatigue.
    Ohta Y; Takahashi K; Matsubayashi T
    Muscle Nerve; 2013 Jun; 47(6):894-902. PubMed ID: 23512264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of force-time parameters and EMG in static explosive gripping by various exertion conditions: muscle fatigue state and submaximal exertion.
    Ikemoto Y; Demura S; Yamaji S; Yamada T
    J Sports Med Phys Fitness; 2006 Sep; 46(3):381-7. PubMed ID: 16998441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time- and frequency-domain monitoring of the myoelectric signal during a long-duration, cyclic, force-varying, fatiguing hand-grip task.
    Clancy EA; Bertolina MV; Merletti R; Farina D
    J Electromyogr Kinesiol; 2008 Oct; 18(5):789-97. PubMed ID: 17434755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting force loss during dynamic fatiguing exercises from non-linear mapping of features of the surface electromyogram.
    Gonzalez-Izal M; Falla D; Izquierdo M; Farina D
    J Neurosci Methods; 2010 Jul; 190(2):271-8. PubMed ID: 20452376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of grip span on maximal grip force and fatigue of flexor digitorum superficialis.
    Blackwell JR; Kornatz KW; Heath EM
    Appl Ergon; 1999 Oct; 30(5):401-5. PubMed ID: 10484275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography.
    Fernando JB; Yoshioka M; Ozawa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5303-5306. PubMed ID: 28269457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography.
    Blangsted AK; Sjøgaard G; Madeleine P; Olsen HB; Søgaard K
    J Electromyogr Kinesiol; 2005 Apr; 15(2):138-48. PubMed ID: 15664144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fatigue estimation with twitch force derived from sEMG peaks.
    Na Y; Lee HD; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3492-5. PubMed ID: 26737045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.