These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19963583)

  • 1. Fractal, entropic and chaotic approaches to complex physiological time series analysis: a critical appraisal.
    Li C; Ding GH; Wu GQ; Poon CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3429-32. PubMed ID: 19963583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new criterion to distinguish stochastic and deterministic time series with the PoincarĂ© section and fractal dimension.
    Golestani A; Jahed Motlagh MR; Ahmadian K; Omidvarnia AH; Mozayani N
    Chaos; 2009 Mar; 19(1):013137. PubMed ID: 19335001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of nonlinear indices in analyses of heart rate variability.
    Li C; Tang DK; Zheng DA; Ding GH; Poon CS; Wu GQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2145-8. PubMed ID: 19163121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting determinism in EEG signals using principal component analysis and surrogate data testing.
    Meghdadi AH; Fazel-Rezai R; Aghakhani Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6209-12. PubMed ID: 17946363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of surface EMG signals using improved approximate entropy.
    Chen WT; Wang ZZ; Ren XM
    J Zhejiang Univ Sci B; 2006 Oct; 7(10):844-8. PubMed ID: 16972328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method of estimating the noise level in a chaotic time series.
    Jayawardena AW; Xu P; Li WK
    Chaos; 2008 Jun; 18(2):023115. PubMed ID: 18601482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of chaotic determinism in time series from randomly forced maps.
    Chon KH; Kanters JK; Cohen RJ; Holstein-Rathlou NH
    Physica D; 1997; 99():471-86. PubMed ID: 11540720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elman neural networks for dynamic modeling of epileptic EEG.
    Kannathal N; Puthusserypady SK; Min LC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6145-8. PubMed ID: 17945939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic model for heart-rate fluctuations.
    Kuusela T; Shepherd T; Hietarinta J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061904. PubMed ID: 16241258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based detector and extraction of weak signal frequencies from chaotic data.
    Zhou C; Cai T; Heng Lai C; Wang X; Lai YC
    Chaos; 2008 Mar; 18(1):013104. PubMed ID: 18377055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexing of discrete chaotic signals in presence of noise.
    Nagaraj N; Vaidya PG
    Chaos; 2009 Sep; 19(3):033102. PubMed ID: 19791982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic dynamics of a frequency-modulated microwave oscillator with time-delayed feedback.
    Dao H; Rodgers JC; Murphy TE
    Chaos; 2013 Mar; 23(1):013101. PubMed ID: 23556938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods derived from nonlinear dynamics for analysing heart rate variability.
    Voss A; Schulz S; Schroeder R; Baumert M; Caminal P
    Philos Trans A Math Phys Eng Sci; 2009 Jan; 367(1887):277-96. PubMed ID: 18977726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear and chaos characteristics of heart sound time series.
    Li BB; Yuan ZF
    Proc Inst Mech Eng H; 2008 Apr; 222(3):265-72. PubMed ID: 18491696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-dependent intrinsic entropies of complex time series.
    Yeh JR; Peng CK; Huang NE
    Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2065):20150204. PubMed ID: 26953181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A method to estimate the short-term fractal dimension of heart rate variability based on wavelet transform].
    Zhonggang L; Hong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):981-5. PubMed ID: 17121336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos and fractals in dynamical models of transport and reaction.
    Gaspard P; Claus I
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):303-15. PubMed ID: 16210183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for the time-varying nonlinear prediction of complex nonstationary biomedical signals.
    Faes L; Chon KH; Nollo G
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):205-9. PubMed ID: 19272876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues.
    Yeragani VK; Sobolewski E; Jampala VC; Kay J; Yeragani S; Igel G
    Clin Sci (Lond); 1998 Sep; 95(3):295-301. PubMed ID: 9730848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring body temperature time series regularity using Approximate Entropy and Sample Entropy.
    Cuesta-Frau D; Miro-Martinez P; Oltra-Crespo S; Varela-Entrecanales M; Aboy M; Novak D; Austin D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3461-4. PubMed ID: 19964986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.