These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19963692)

  • 1. Design and development of an upper extremity motion capture system for a rehabilitation robot.
    Nanda P; Smith A; Gebregiorgis A; Brown EE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7135-8. PubMed ID: 19963692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of reaching movement with 6-DOF upper rehabilitation system 'Robotherapist'.
    Kikuchi T; Oda K; Isozumi S; Ohyama Y; Shichi N; Furusho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4262-5. PubMed ID: 19163654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.
    Ohnishi K; Saito Y; Oshima T; Higashihara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2850-3. PubMed ID: 24110321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks.
    Bertomeu-Motos A; Lledó LD; Díez JA; Catalan JM; Ezquerro S; Badesa FJ; Garcia-Aracil N
    Sensors (Basel); 2015 Dec; 15(12):30571-83. PubMed ID: 26690160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A switching regime model for the EMG-based control of a robot arm.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):53-63. PubMed ID: 20403787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Open-Source 7-DOF Wireless Human Arm Motion-Tracking System for Use in Robotics Research.
    Shintemirov A; Taunyazov T; Omarali B; Nurbayeva A; Kim A; Bukeyev A; Rubagotti M
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IoT-Enabled Dual-Arm Motion Capture and Mapping for Telerobotics in Home Care.
    Zhou H; Yang G; Lv H; Huang X; Yang H; Pang Z
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1541-1549. PubMed ID: 31751288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desirable features of a "humanoid" robot-therapist.
    Morasso P; Casadio M; Giannoni P; Masia L; Sanguineti V; Squeri V; Vergaro E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2418-21. PubMed ID: 19965200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke.
    Cho KH; Song WK
    Tohoku J Exp Med; 2015 Oct; 237(2):149-55. PubMed ID: 26460793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and control of robotic systems worn by humans.
    Kazerooni H; Mahoney SL
    J Dyn Syst Meas Control; 1991 Sep; 113(3):379-87. PubMed ID: 11539853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Design Scheme for Intelligent Upper Limb Rehabilitation Training Robot.
    Zhao Y; Liang C; Gu Z; Zheng Y; Wu Q
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32344651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.