These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19963816)

  • 1. Thermoresponsive hydrogel with embedded magnetic nanoparticles for the implementation of shrinkable medical microrobots and for targeting and drug delivery applications.
    Lapointe J; Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4246-9. PubMed ID: 19963816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(N-isopropylacrylamide) beads synthesis with nanoparticles embedded for the implementation of shrinkable medical microrobots for biomedical applications.
    Lapointe J; Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3800-3. PubMed ID: 21097054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release.
    Chen H; Gu Y; Hub Y; Qian Z
    PDA J Pharm Sci Technol; 2007; 61(4):303-13. PubMed ID: 17933211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and mechanical characterization of a PNIPA hydrogel composite.
    Liu K; Ovaert TC; Mason JJ
    J Mater Sci Mater Med; 2008 Apr; 19(4):1815-21. PubMed ID: 18040754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide.
    Meenach SA; Anderson AA; Suthar M; Anderson KW; Hilt JZ
    J Biomed Mater Res A; 2009 Dec; 91(3):903-9. PubMed ID: 19090484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus.
    Lee H; Choi H; Lee M; Park S
    Biomed Microdevices; 2018 Nov; 20(4):103. PubMed ID: 30535774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.
    Frimpong RA; Fraser S; Hilt JZ
    J Biomed Mater Res A; 2007 Jan; 80(1):1-6. PubMed ID: 16941587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics.
    Wang Y; Li Z; Ouyang J; Karniadakis GE
    Soft Matter; 2020 May; 16(20):4756-4766. PubMed ID: 32373893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
    Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV
    Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan microparticles embedded with multi-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene-glycol dimethacrylate)-based hydrogel nanoparticles as a new carrier for delivery of hydrophobic drugs.
    Matos Fonseca J; Fátima Medeiros S; Alves GM; Santos DMD; Campana-Filho SP; Santos AMD
    Colloids Surf B Biointerfaces; 2019 Mar; 175():73-83. PubMed ID: 30522010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and decoloring properties of sodium humate/poly (N-isopropylacrylamide) hydrogels.
    Yi JZ; Ma YQ; Zhang LM
    Bioresour Technol; 2008 Sep; 99(13):5362-7. PubMed ID: 18096380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release kinetics of benzoic acid and its sodium salt from a series of poly(N-isopropylacrylamide) matrices with various percentage crosslinking.
    Coughlan DC; Corrigan OI
    J Pharm Sci; 2008 Jan; 97(1):318-30. PubMed ID: 17683058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swelling and diffusion of PNIPA-based gels for localized chemotherapy and hyperthermia.
    Oni Y; Soboyejo WO
    Mater Sci Eng C Mater Biol Appl; 2012 Jan; 32(1):24-30. PubMed ID: 23177767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye.
    Kang Derwent JJ; Mieler WF
    Trans Am Ophthalmol Soc; 2008; 106():206-13; discussion 213-4. PubMed ID: 19277236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel.
    Jaiswal MK; Banerjee R; Pradhan P; Bahadur D
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):185-94. PubMed ID: 20702074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery.
    Sabnis A; Wadajkar AS; Aswath P; Nguyen KT
    Nanomedicine; 2009 Sep; 5(3):305-15. PubMed ID: 19231314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of two polymeric carrier formulations for controlled release of hydrophilic and hydrophobic drugs.
    Chen H; Gu Y; Hu Y
    J Mater Sci Mater Med; 2008 Feb; 19(2):651-8. PubMed ID: 17619980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems.
    Coughlan DC; Corrigan OI
    Int J Pharm; 2006 Apr; 313(1-2):163-74. PubMed ID: 16517105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release.
    Satarkar NS; Hilt JZ
    J Control Release; 2008 Sep; 130(3):246-51. PubMed ID: 18606201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive Properties of PNIPAM-Based Hydrogels: Effect of Molecular Architecture and Embedded Gold Nanoparticles.
    Nguyen HH; Payré B; Fitremann J; Lauth-de Viguerie N; Marty JD
    Langmuir; 2015 Apr; 31(16):4761-8. PubMed ID: 25828438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.