These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19963818)

  • 1. Multi-scale modeling of excitation-contraction coupling in the normal and failing heart.
    Kerckhoffs RC; Campbell SG; Flaim SN; Howard EJ; Sierra-Aguado J; Mulligan LJ; McCulloch AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4281-2. PubMed ID: 19963818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling cardiac electromechanics and mechanoelectrical coupling in dyssynchronous and failing hearts: insight from adaptive computer models.
    Kuijpers NH; Hermeling E; Bovendeerd PH; Delhaas T; Prinzen FW
    J Cardiovasc Transl Res; 2012 Apr; 5(2):159-69. PubMed ID: 22271009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromechanical models of the ventricles.
    Trayanova NA; Constantino J; Gurev V
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H279-86. PubMed ID: 21572017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully coupled model for electromechanics of the heart.
    Xia H; Wong K; Zhao X
    Comput Math Methods Med; 2012; 2012():927279. PubMed ID: 23118801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative reconstruction of cardiac electromechanics in human myocardium: assembly of electrophysiologic and tension generation models.
    Sachse FB; Seemann G; Chaisaowong K; Weiss D
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S210-8. PubMed ID: 14760926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electromechanical left ventricular wedge model to study the effects of deformation on repolarization during heart failure.
    Rocha BM; Toledo EM; Barra LP; dos Santos RW
    Biomed Res Int; 2015; 2015():465014. PubMed ID: 26550570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-entrant cardiac arrhythmias in computational models of long QT myocardium.
    Clayton RH; Bailey A; Biktashev VN; Holden AV
    J Theor Biol; 2001 Jan; 208(2):215-25. PubMed ID: 11162065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model.
    Campbell SG; Flaim SN; Leem CH; McCulloch AD
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3361-80. PubMed ID: 18593662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational model of cardiac electromechanics.
    Nickerson D; Niederer S; Stevens C; Nash M; Hunter P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5311-4. PubMed ID: 17946694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac contraction induces discordant alternans and localized block.
    Radszuweit M; Alvarez-Lacalle E; Bär M; Echebarria B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022703. PubMed ID: 25768527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling in heart failure.
    Lakatta EG
    Hosp Pract (Off Ed); 1991 Jul; 26(7):85-8, 91-8. PubMed ID: 1677009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From genome to physiome: integrative models of cardiac excitation.
    Rudy Y
    Ann Biomed Eng; 2000 Aug; 28(8):945-50. PubMed ID: 11144679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas.
    Freudenberg J; Schiemann T; Tiede U; Höhne KH
    Comput Biol Med; 2000 Jul; 30(4):191-205. PubMed ID: 10821938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module.
    Walmsley J; Arts T; Derval N; Bordachar P; Cochet H; Ploux S; Prinzen FW; Delhaas T; Lumens J
    PLoS Comput Biol; 2015 Jul; 11(7):e1004284. PubMed ID: 26204520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the cellular basis of altered excitation-contraction coupling in heart failure.
    Winslow RL; Rice J; Jafri S
    Prog Biophys Mol Biol; 1998; 69(2-3):497-514. PubMed ID: 9785953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: implications for electrical instability.
    Iyer V; Heller V; Armoundas AA
    J Appl Physiol (1985); 2012 Mar; 112(6):944-55. PubMed ID: 22194323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of isoproterenol and ouabain on excitation-contraction coupling, cross-bridge function, and energetics in failing human myocardium.
    Hasenfuss G; Mulieri LA; Allen PD; Just H; Alpert NR
    Circulation; 1996 Dec; 94(12):3155-60. PubMed ID: 8989123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria.
    Whittaker DG; Ni H; El Harchi A; Hancox JC; Zhang H
    PLoS Comput Biol; 2017 Jun; 13(6):e1005593. PubMed ID: 28609477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionally and structurally integrated computational modeling of ventricular physiology.
    McCulloch AD
    Jpn J Physiol; 2004 Dec; 54(6):531-9. PubMed ID: 15760485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue.
    Saucerman JJ; Healy SN; Belik ME; Puglisi JL; McCulloch AD
    Circ Res; 2004 Dec; 95(12):1216-24. PubMed ID: 15528464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.