These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19963857)

  • 1. A study on band-pass filtering for calculating foot displacements from accelerometer and gyroscope sensors.
    Charry E; Lai DT; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4824, 4826-7. PubMed ID: 19963857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of end point foot clearance points from inertial sensor data.
    Santhiranayagam BK; Lai DT; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6503-6. PubMed ID: 22255828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisensor approach to walking distance estimation with foot inertial sensing.
    Alvarez JC; González RC; Alvarez D; López AM; Rodríguez-Uría J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5720-3. PubMed ID: 18003311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for deriving displacement data during cyclical movement using an inertial sensor.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2005 Jul; 208(Pt 13):2503-14. PubMed ID: 15961737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drift-free position estimation of periodic or quasi-periodic motion using inertial sensors.
    Latt WT; Veluvolu KC; Ang WT
    Sensors (Basel); 2011; 11(6):5931-51. PubMed ID: 22163935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slope estimation during normal walking using a shank-mounted inertial sensor.
    López AM; Álvarez D; González RC; Álvarez JC
    Sensors (Basel); 2012; 12(9):11910-21. PubMed ID: 23112689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External sensors for detecting the activation and deactivation times of the major muscles used in walking.
    Lovse L; Bobet J; Roy FD; Rolf R; Mushahwar VK; Stein RB
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):488-98. PubMed ID: 22717527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The validity of assessing temporal events, sub-phases and trunk kinematics of the sit-to-walk movement in older adults using a single inertial sensor.
    Walgaard S; Faber GS; van Lummel RC; van Dieën JH; Kingma I
    J Biomech; 2016 Jun; 49(9):1933-1937. PubMed ID: 27017301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory estimation of foot placement during walking using inertial sensors.
    Martin Schepers H; van Asseldonk EH; Baten CT; Veltink PH
    J Biomech; 2010 Dec; 43(16):3138-43. PubMed ID: 20723901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring orientation of human body segments using miniature gyroscopes and accelerometers.
    Luinge HJ; Veltink PH
    Med Biol Eng Comput; 2005 Mar; 43(2):273-82. PubMed ID: 15865139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.
    Benoussaad M; Sijobert B; Mombaur K; Coste CA
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A basic study on variable-gain Kalman filter based on angle error calculated from acceleration signals for lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3423-6. PubMed ID: 24110464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data.
    Bonnet V; Mazzà C; McCamley J; Cappozzo A
    J Neuroeng Rehabil; 2013 Mar; 10():29. PubMed ID: 23496986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.