These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19963859)

  • 1. Microwave non-invasive sensing of respiratory tidal volume.
    Massagram W; Lubecke VM; Boric-Lubecke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4832-5. PubMed ID: 19963859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Non-Contact Respiratory Rate Monitoring of Neonates Based on Synchronous Evaluation of a 3D Time-of-Flight Camera and a Microwave Interferometric Radar Sensor.
    Gleichauf J; Herrmann S; Hennemann L; Krauss H; Nitschke J; Renner P; Niebler C; Koelpin A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Arctangent Center-Tracking Method for Respiratory Displacement Monitoring of Subjects in Arbitrary Positions.
    Ishrak MS; Sameera JN; Boric-Lubecke O; Lubecke VM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of Doppler radar-based respiratory signatures.
    Lee YS; Pathirana PN; Evans RJ; Steinfort CL
    Med Biol Eng Comput; 2016 Aug; 54(8):1169-79. PubMed ID: 26358241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tidal Volume and Instantaneous Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera.
    Reyes BA; Reljin N; Kong Y; Nam Y; Chon KH
    IEEE J Biomed Health Inform; 2017 May; 21(3):764-777. PubMed ID: 26915142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-contact respiratory monitoring system using a ceiling-attached microwave antenna.
    Uenoyama M; Matsui T; Yamada K; Suzuki S; Takase B; Suzuki S; Ishihara M; Kawakami M
    Med Biol Eng Comput; 2006 Sep; 44(9):835-40. PubMed ID: 16941101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algoritmically improved microwave radar monitors breathing more acurrate than sensorized belt.
    Czyżewski A; Kostek B; Kurowski A; Narkiewicz K; Graff B; Odya P; Śmiałkowski T; Sroczyński A
    Sci Rep; 2022 Aug; 12(1):14412. PubMed ID: 36002632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Software-Defined Doppler Radar Sensor for Human Breathing Detection.
    Costanzo S
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.
    Sun G; Matsui T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5985-8. PubMed ID: 26737655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-contact respiratory rate measurement validation for hospitalized patients.
    Droitcour AD; Seto TB; Park BK; Yamada S; Vergara A; El Hourani C; Shing T; Yuen A; Lubecke VM; Boric-Lubecke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4812-5. PubMed ID: 19963625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars.
    Suzuki S; Matsui T; Kawahara H; Ichiki H; Shimizu J; Kondo Y; Gotoh S; Yura H; Takase B; Ishihara M
    Med Biol Eng Comput; 2009 Jan; 47(1):101-5. PubMed ID: 18946695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-contact physiological signal detection using continuous wave Doppler radar.
    Qiao D; He T; Hu B; Li Y
    Biomed Mater Eng; 2014; 24(1):993-1000. PubMed ID: 24211989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel stress monitoring method through stress-induced respiratory alterations: non-contact measurement of respiratory V(T)/T(I) alterations induced by stressful sound using a 10 GHz microwave radar.
    Gotoh S; Sun G; Kagawa M; Matsui T
    J Med Eng Technol; 2011 Nov; 35(8):416-9. PubMed ID: 22059799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of Respiratory Signatures for Multiple Subjects Using Independent Component Analysis with the JADE Algorithm.
    Islam SMM; Yavari E; Rahman A; Lubecke VM; Boric-Lubecke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1234-1237. PubMed ID: 30440613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection.
    Lee J; Yoo SK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data acquisition system for Doppler radar vital-sign monitor.
    Vergara AM; Lubecke VM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2269-72. PubMed ID: 18002443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring variations of biological impedances using microwave Doppler radar.
    Thansandote A; Stuchly SS; Smith AM
    Phys Med Biol; 1983 Aug; 28(8):983-90. PubMed ID: 6622532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate measurement of respiratory airflow waveforms using depth data.
    Seppanen TM; Kananen J; Kai Noponen ; Alho OP; Seppanen T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7857-60. PubMed ID: 26738113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a non-contact 15-second paediatric respiratory rate monitor using microwave radar and its clinical application.
    Katoh M; Kanazawa T; Abe Y; Sun G; Matsui T
    Acta Paediatr; 2023 Mar; 112(3):493-495. PubMed ID: 36301152
    [No Abstract]   [Full Text] [Related]  

  • 20. Continuous non-contact respiratory rate and tidal volume monitoring using a Depth Sensing Camera.
    Addison PS; Smit P; Jacquel D; Addison AP; Miller C; Kimm G
    J Clin Monit Comput; 2022 Jun; 36(3):657-665. PubMed ID: 33743106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.