BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19963881)

  • 1. Operability evaluation using an simulation system for gripping motion in robotic tele-surgery.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5106-9. PubMed ID: 19963881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot study on verification of effectiveness on operability of assistance system for robotic tele-surgery using simulation.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2308-12. PubMed ID: 21096798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time simulation for intra-operative navigation in robotic surgery. Using a mass spring system for a basic study of organ deformation.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1237-41. PubMed ID: 18002187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient force feedback transmission system for tele surgery.
    Natarajan S; Ganz A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3245-8. PubMed ID: 19163399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model based control algorithms for robotic assisted beating heart surgery.
    Bebek O; Cavusoglu MC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():823-8. PubMed ID: 17946004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The overview of robot surgery].
    Dohi T
    Nihon Rinsho; 2004 Apr; 62(4):824-30. PubMed ID: 15106355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-phase training on a virtual reality simulator improves technical performance in tele-robotic surgery.
    Balasundaram I; Aggarwal R; Darzi A
    Int J Med Robot; 2008 Jun; 4(2):139-45. PubMed ID: 18327876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D robotic tele-surgery and training over next generation wireless networks.
    Martini MG; Hewage CT; Nasralla MM; Smith R; Jourdan I; Rockall T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6244-7. PubMed ID: 24111167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Future aspect of robotic surgery].
    Shimada M; Sugimachi K
    Fukuoka Igaku Zasshi; 2002 Apr; 93(4):57-63. PubMed ID: 12048908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TeleRobotic fundamentals of laparoscopic surgery (FLS): effects of time delay--pilot study.
    Lum MJ; Rosen J; Lendvay TS; Wright AS; Sinanan MN; Hannaford B
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5597-600. PubMed ID: 19163986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotics in cardiac surgery: the Istanbul experience.
    Sagbas E; Akpinar B; Sanisoglu I; Caynak B; Guden M; Ozbek U; Bayramoglu Z; Bayindir O
    Int J Med Robot; 2006 Jun; 2(2):179-87. PubMed ID: 17520629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A virtual reality-based method of decreasing transmission time of visual feedback for a tele-operative robotic catheter operating system.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Med Robot; 2016 Mar; 12(1):32-45. PubMed ID: 25693866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of Robotic Surgery Simulator (RoSS).
    Kesavadas T; Stegemann A; Sathyaseelan G; Chowriappa A; Srimathveeravalli G; Seixas-Mikelus S; Chandrasekhar R; Wilding G; Guru K
    Stud Health Technol Inform; 2011; 163():274-6. PubMed ID: 21335803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tele-control of an endoscopic surgical robot system between Japan and Thailand for tele-NOTES.
    Suzuki N; Hattori A; Ieiri S; Konishi K; Maeda T; Fujino Y; Ueda Y; Navicharern P; Tanoue K; Hashizume M
    Stud Health Technol Inform; 2009; 142():374-9. PubMed ID: 19377187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-distance robotic telesurgery: a feasibility study for care in remote environments.
    Rayman R; Croome K; Galbraith N; McClure R; Morady R; Peterson S; Smith S; Subotic V; Van Wynsberghe A; Primak S
    Int J Med Robot; 2006 Sep; 2(3):216-24. PubMed ID: 17520635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery.
    Anvari M; Broderick T; Stein H; Chapman T; Ghodoussi M; Birch DW; McKinley C; Trudeau P; Dutta S; Goldsmith CH
    Comput Aided Surg; 2005 Mar; 10(2):93-9. PubMed ID: 16298920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.