These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 19963946)
21. Detection of sleep apnea from surface ECG based on features extracted by an autoregressive model. Mendez MO; Ruini DD; Villantieri OP; Matteucci M; Penzel T; Cerutti S; Bianchi AM Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6106-9. PubMed ID: 18003408 [TBL] [Abstract][Full Text] [Related]
22. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Marcos JV; Hornero R; Alvarez D; Del Campo F; Zamarrón C; López M Comput Methods Programs Biomed; 2008 Oct; 92(1):79-89. PubMed ID: 18672313 [TBL] [Abstract][Full Text] [Related]
23. Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models. Lewicke A; Sazonov E; Corwin MJ; Neuman M; Schuckers S; IEEE Trans Biomed Eng; 2008 Jan; 55(1):108-18. PubMed ID: 18232352 [TBL] [Abstract][Full Text] [Related]
24. Detection of obstructive sleep apnea in ECG recordings using time-frequency distributions and dynamic features. Quiceno-Manrique AF; Alonso-Hernández JB; Travieso-González CM; Ferrer-Ballester MA; Castellanos-Domínguez G Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5559-62. PubMed ID: 19964393 [TBL] [Abstract][Full Text] [Related]
25. Sleep staging classification based on HRV: time-variant analysis. Mendez MO; Matteucci M; Cerutti S; Aletti F; Bianchi AM Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():9-12. PubMed ID: 19963449 [TBL] [Abstract][Full Text] [Related]
26. Automatic detection and quantification of sleep apnea using heart rate variability. Babaeizadeh S; White DP; Pittman SD; Zhou SH J Electrocardiol; 2010; 43(6):535-41. PubMed ID: 20719334 [TBL] [Abstract][Full Text] [Related]
27. Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. Al-Angari HM; Sahakian AV IEEE Trans Biomed Eng; 2007 Oct; 54(10):1900-4. PubMed ID: 17926691 [TBL] [Abstract][Full Text] [Related]
28. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network. Niroshana SMI; Zhu X; Nakamura K; Chen W PLoS One; 2021; 16(4):e0250618. PubMed ID: 33901251 [TBL] [Abstract][Full Text] [Related]
29. Classification of Cheyne-Stokes breathing and obstructive sleep apnea using ECG. Suhas SR; Vijendra S; Burk JR; Lucas EA; Behbehani K Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3561-4. PubMed ID: 17947037 [TBL] [Abstract][Full Text] [Related]
30. Automatic differentiation of obstructive and central hypopneas with esophageal pressure measurement during sleep. Morgenstern C; Schwaibold M; Randerath W; Bolz A; Jane R Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7102-5. PubMed ID: 19963945 [TBL] [Abstract][Full Text] [Related]
31. Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings. Khandoker AH; Gubbi J; Palaniswami M IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1057-67. PubMed ID: 19775974 [TBL] [Abstract][Full Text] [Related]
32. On determining available stochastic features by spectral splitting in obstructive sleep apnea detection. Martínez-Vargas JD; Sepúlveda-Cano LM; Castellanos-Dominguez G Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6079-82. PubMed ID: 22255726 [TBL] [Abstract][Full Text] [Related]
33. Signal processing and feature extraction for sleep evaluation in wearable devices. Bianchi AM; Villantieri OP; Mendez MO; Cerutti S Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3517-20. PubMed ID: 17945782 [TBL] [Abstract][Full Text] [Related]
34. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea. Khandoker AH; Karmakar CK; Palaniswami M Med Eng Phys; 2011 Mar; 33(2):204-9. PubMed ID: 20980188 [TBL] [Abstract][Full Text] [Related]
35. A classification algorithm based on spectral features from nocturnal oximetry and support vector machines to assist in the diagnosis of obstructive sleep apnea. Marcos JV; Hornero R; Alvarez D; Del Campo F; Zamarrón C Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5547-50. PubMed ID: 19964390 [TBL] [Abstract][Full Text] [Related]
36. Detection of sleep disordered breathing by automated ECG analysis. Canisius S; Ploch T; Gross V; Jerrentrup A; Penzel T; Kesper K Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2602-5. PubMed ID: 19163236 [TBL] [Abstract][Full Text] [Related]
37. A new simple efficient classification technique for severity of sleep apnea with mathematical model and interpretation. Hossen A Technol Health Care; 2019; 27(4):389-406. PubMed ID: 30829627 [TBL] [Abstract][Full Text] [Related]
38. Robust detection of sleep apnea from Holter ECGs. Joint assessment of modulations in QRS amplitude and respiratory myogram interference. Maier C; Wenz H; Dickhaus H Methods Inf Med; 2014; 53(4):303-7. PubMed ID: 25077646 [TBL] [Abstract][Full Text] [Related]
39. Electrocardiographic variables in children with syndromic craniosynostosis and primary snoring to mild obstructive sleep apnea: significance of identifying respiratory arrhythmia during sleep. Kakar E; Corel LJA; Tasker RC; de Goederen R; Wolvius EB; Mathijssen IMJ; Joosten KFM Sleep Med; 2018 May; 45():1-6. PubMed ID: 29680416 [TBL] [Abstract][Full Text] [Related]
40. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability. Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]