These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 19963950)
21. Learning algorithms for human-machine interfaces. Danziger Z; Fishbach A; Mussa-Ivaldi FA IEEE Trans Biomed Eng; 2009 May; 56(5):1502-11. PubMed ID: 19203886 [TBL] [Abstract][Full Text] [Related]
22. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590 [TBL] [Abstract][Full Text] [Related]
23. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation. Lin CY; Tsai CM; Shih PC; Wu HC Technol Health Care; 2015; 24 Suppl 1():S97-103. PubMed ID: 26409543 [TBL] [Abstract][Full Text] [Related]
24. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove. Ma Z; Ben-Tzvi P; Danoff J IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1323-1332. PubMed ID: 26595925 [TBL] [Abstract][Full Text] [Related]
25. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
26. Finger movement function after ultrasound-guided percutaneous pulley release for trigger finger: effects of postoperative rehabilitation. Lu SC; Kuo LC; Hsu HY; Jou IM; Sun YN; Su FC Arch Phys Med Rehabil; 2015 Jan; 96(1):91-7. PubMed ID: 25251102 [TBL] [Abstract][Full Text] [Related]
27. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation. Biggar S; Yao W IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796 [TBL] [Abstract][Full Text] [Related]
28. Extrinsic flexor muscles generate concurrent flexion of all three finger joints. Kamper DG; George Hornby T; Rymer WZ J Biomech; 2002 Dec; 35(12):1581-9. PubMed ID: 12445611 [TBL] [Abstract][Full Text] [Related]
29. Long-term results after vascularised joint transfer for finger joint reconstruction. Hierner R; Berger AK J Plast Reconstr Aesthet Surg; 2008 Nov; 61(11):1338-46. PubMed ID: 17996505 [TBL] [Abstract][Full Text] [Related]
30. The initiation and sequence of digital joint motion. A three-dimensional motion analysis. Somia N; Rash GS; Wachowiak M; Gupta A J Hand Surg Br; 1998 Dec; 23(6):792-5. PubMed ID: 9888684 [TBL] [Abstract][Full Text] [Related]
31. Analysis of voluntary finger movements during hand tasks by a motion analyzer. Nakamura M; Miyawaki C; Matsushita N; Yagi R; Handa Y J Electromyogr Kinesiol; 1998 Oct; 8(5):295-303. PubMed ID: 9785250 [TBL] [Abstract][Full Text] [Related]
32. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. Delph MA; Fischer SA; Gauthier PW; Luna CH; Clancy EA; Fischer GS IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650426. PubMed ID: 24187244 [TBL] [Abstract][Full Text] [Related]
33. Mobility of the elastic counterpressure space suit glove. Tanaka K; Danaher P; Webb P; Hargens AR Aviat Space Environ Med; 2009 Oct; 80(10):890-3. PubMed ID: 19817242 [TBL] [Abstract][Full Text] [Related]
34. Pull-out wire fixation for acute mallet finger fractures with k-wire stabilization of the distal interphalangeal joint. Zhang X; Meng H; Shao X; Wen S; Zhu H; Mi X J Hand Surg Am; 2010 Nov; 35(11):1864-9. PubMed ID: 20961707 [TBL] [Abstract][Full Text] [Related]
35. Quantitative evaluation of hand functions using a wearable hand exoskeleton system. Kim S; Lee J; Park W; Bae J IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030 [TBL] [Abstract][Full Text] [Related]
36. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Li J; Zheng R; Zhang Y; Yao J IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591 [TBL] [Abstract][Full Text] [Related]
37. A Modular Hybrid Exoskeletal-Soft Glove for High Degree of Freedom Monitoring Capability. Trott RE; Kleinig TJ; Hillier SL; Hobbs DA; Reynolds KJ IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():577-582. PubMed ID: 31374692 [TBL] [Abstract][Full Text] [Related]
38. Enhancement of bend sensor properties as applied in a glove for use in neurorehabilitation settings. Oess NP; Wanek J; van Hedel HJ Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5903-6. PubMed ID: 21096935 [TBL] [Abstract][Full Text] [Related]
39. Thumb movements, motions, and moments. Hollister A; Giurintano DJ J Hand Ther; 1995; 8(2):106-14. PubMed ID: 7550620 [TBL] [Abstract][Full Text] [Related]
40. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. Yin YH; Fan YJ; Xu LD IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]