BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19963970)

  • 1. Flexible multi electrode brain-machine interface for recording in the cerebellum.
    Kohler P; Linsmeier CE; Thelin J; Bengtsson M; Jorntell H; Garwicz M; Schouenborg J; Wallman L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():536-8. PubMed ID: 19963970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio.
    Takei K; Kawano T; Kawashima T; Sawada K; Kaneko H; Ishida M
    Biomed Microdevices; 2010 Feb; 12(1):41-8. PubMed ID: 19757069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cortical recording platform utilizing microECoG electrode arrays.
    Kim J; Wilson JA; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats.
    Hassler C; Guy J; Nietzschmann M; Staiger JF; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():644-7. PubMed ID: 22254391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel flexible dry PU/TiN-multipin electrodes: first application in EEG measurements.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Zanow F; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():55-8. PubMed ID: 22254249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical recording with polypyrrole microwire electrodes.
    Bae WJ; Ruddy BP; Richardson AG; Hunter IW; Bizzi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5794-7. PubMed ID: 19164034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.
    Patrick E; Sankar V; Rowe W; Sanchez JC; Nishida T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1816-9. PubMed ID: 21095940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.
    Kane SR; Cogan SF; Ehrlich J; Plante TD; McCreery DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5416-9. PubMed ID: 22255562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A MEMS-based flexible multichannel ECoG-electrode array.
    Rubehn B; Bosman C; Oostenveld R; Fries P; Stieglitz T
    J Neural Eng; 2009 Jun; 6(3):036003. PubMed ID: 19436080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.
    Kane SR; Cogan SF; Ehrlich J; Plante TD; McCreery DB; Troyk PR
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2153-60. PubMed ID: 23475329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys.
    Bonini L; Maranesi M; Livi A; Bruni S; Fogassi L; Holzhammer T; Paul O; Ruther P
    Biomed Tech (Berl); 2014 Aug; 59(4):273-81. PubMed ID: 24434299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.