These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 19963992)

  • 21. A novel semi-automatic snake robot for natural orifice transluminal endoscopic surgery: preclinical tests in animal and human cadaver models (with video).
    Son J; Cho CN; Kim KG; Chang TY; Jung H; Kim SC; Kim MT; Yang N; Kim TY; Sohn DK
    Surg Endosc; 2015 Jun; 29(6):1643-7. PubMed ID: 25294539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A miniaturized robotic platform for natural orifice transluminal endoscopic surgery: in vivo validation.
    Tognarelli S; Salerno M; Tortora G; Quaglia C; Dario P; Schurr MO; Menciassi A
    Surg Endosc; 2015 Dec; 29(12):3477-84. PubMed ID: 25676200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Ongoing Development and Directions in Flexible Robotic Endoscopy].
    Kume K
    J UOEH; 2015 Jun; 37(2):149-56. PubMed ID: 26073504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tele-control of an endoscopic surgical robot system between Japan and Thailand for tele-NOTES.
    Suzuki N; Hattori A; Ieiri S; Konishi K; Maeda T; Fujino Y; Ueda Y; Navicharern P; Tanoue K; Hashizume M
    Stud Health Technol Inform; 2009; 142():374-9. PubMed ID: 19377187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in natural orifice transluminal endoscopic surgery†.
    Yip HC; Chiu PW
    Eur J Cardiothorac Surg; 2016 Jan; 49 Suppl 1():i25-30. PubMed ID: 26494866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Evaluation of force data with a force/torque sensor during FESS. A step towards robot-assisted surgery].
    Eichhorn KW; Tingelhoff K; Wagner I; Westphal R; Rilk M; Kunkel ME; Wahl FM; Bootz F
    HNO; 2008 Aug; 56(8):789-94. PubMed ID: 18210013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel endoscopic therapeutics for early gastric cancer.
    Chiu PW
    Clin Gastroenterol Hepatol; 2014 Jan; 12(1):120-5. PubMed ID: 23954641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intuitive master device for endoscopic robots with visual-motor correspondence.
    Cheon B; Baek H; Kim CK; Ahn J; Kwon DS
    Int J Med Robot; 2022 Jun; 18(3):e2397. PubMed ID: 35349215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of advanced endoscopes for Natural Orifice Transluminal Endoscopic Surgery (NOTES).
    Bardaro SJ; Swanström L
    Minim Invasive Ther Allied Technol; 2006; 15(6):378-83. PubMed ID: 17190663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intuitive endoscopic robot master device with image orientation correction.
    Cheon B; Kim CK; Kwon DS
    Int J Med Robot; 2022 Oct; 18(5):e2415. PubMed ID: 35512295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robotics in interventional endoscopy-evolution and the way forward.
    Nabi Z; Manchu C; Reddy DN
    Indian J Gastroenterol; 2024 Oct; 43(5):966-975. PubMed ID: 39172182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cadaveric feasibility study of a teleoperated parallel continuum robot with variable stiffness for transoral surgery.
    Li C; Gu X; Xiao X; Lim CM; Ren H
    Med Biol Eng Comput; 2020 Sep; 58(9):2063-2069. PubMed ID: 32642908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tool/tissue interaction feedback modalities in robot-assisted lump localization.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH; Choi J; Park JW; Bach DJ; Song SJ; Kim YH; Jo Y; Sun K
    ASAIO J; 2009; 55(1):83-5. PubMed ID: 19092664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of flexible endoscope steering using haptic guidance.
    Reilink R; Stramigioli S; Kappers AM; Misra S
    Int J Med Robot; 2011 Jun; 7(2):178-86. PubMed ID: 21462290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The proposal of the locomotive system for capsule endoscopes.
    Watada M; Ozawa K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2493-6. PubMed ID: 19163209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.