These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19964005)

  • 1. In vivo testing of a low noise 32-channel wireless neural recording system.
    Yin M; Lee SB; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1608-11. PubMed ID: 19964005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
    Lee SB; Lee B; Kiani M; Mahmoudi B; Gross R; Ghovanloo M
    IEEE Sens J; 2016 Jan; 16(2):475-484. PubMed ID: 27069422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual slope charge sampling analog front-end for a wireless neural recording system.
    Lee SB; Lee B; Gosselin B; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3134-7. PubMed ID: 25570655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields.
    Lee SB; Manns JR; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():763-6. PubMed ID: 23366004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-noise receiver for multichannel wireless neural recording.
    Yin M; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2024-7. PubMed ID: 19163091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas.
    Lee SB; Yin M; Manns JR; Ghovanloo M
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1993-2004. PubMed ID: 23428612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications.
    Seung Bae Lee ; Hyung-Min Lee ; Kiani M; Uei-Ming Jow ; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2010 Dec; 4(6):360-71. PubMed ID: 23850753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems.
    Tang W; Osman A; Kim D; Goldstein B; Huang C; Martini B; Pieribone VA; Culurciello E
    IEEE Trans Circuits Syst I Regul Pap; 2013 Jun; 60(6):1407-1418. PubMed ID: 24163640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Impulse Radio PWM-Based Wireless Data Acquisition Sensor Interface.
    Lim J; Rezvanitabar A; Degertekin FL; Ghovanloo M
    IEEE Sens J; 2019 Jan; 19(2):603-614. PubMed ID: 31572068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 1.48-mW low-phase-noise analog frequency modulator for wireless biotelemetry.
    Mohseni P; Najafi K
    IEEE Trans Biomed Eng; 2005 May; 52(5):938-43. PubMed ID: 15887544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wireless Headstage System Based on Neural-Recording Chip Featuring 315 nW Kickback-Reduction SAR ADC.
    Zhang Y; Yang C; Sun J; Li Z; Gao H; Luo Y; Xu K; Pan G; Zhao B
    IEEE Trans Biomed Circuits Syst; 2023 Feb; 17(1):105-115. PubMed ID: 36423310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission.
    Sapienza S; Crepaldi M; Motto Ros P; Bonanno A; Demarchi D
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):497-506. PubMed ID: 26011867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-channel low-power system-on-chip for single-unit recording and narrowband wireless transmission of neural signal.
    Bonfanti A; Ceravolo M; Zambra G; Gusmeroli R; Spinelli AS; Lacaita AL; Angotzi GN; Baranauskas G; Fadiga L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1555-60. PubMed ID: 21096380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Trimodal Wireless Implantable Neural Interface System-on-Chip.
    Jia Y; Guler U; Lai YP; Gong Y; Weber A; Li W; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1207-1217. PubMed ID: 33180731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.
    Liu X; Zhang M; Xiong T; Richardson AG; Lucas TH; Chin PS; Etienne-Cummings R; Tran TD; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):874-883. PubMed ID: 27448368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-noise demultiplexing system for active multichannel microelectrode arrays.
    Ji J; Najafi K; Wise KD
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):75-81. PubMed ID: 2026435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A TDM-Based 16-Channel AFE ASIC With Enhanced System-Level CMRR for Wearable EEG Recording With Dry Electrodes.
    Tang T; Goh WL; Yao L; Gao Y
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):516-524. PubMed ID: 32167908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 64-channel neuron recording system.
    Lo YK; Liu W; Chen K; Tsai MH; Hsueh FL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2862-5. PubMed ID: 22254938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.
    Chang SI; Park SY; Yoon E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New architecture for wireless implantable neural recording microsystems based on frequency-division multiplexing.
    Rajabi-Tavakkol A; Sodagar AM; Refan MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6449-52. PubMed ID: 21096715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.