BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19964009)

  • 1. PDMS-based conformable microelectrode arrays with selectable novel 3-D microelectrode geometries for surface stimulation and recording.
    Guo L; Deweerth SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1623-6. PubMed ID: 19964009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues.
    Guo L; Meacham KW; Hochman S; DeWeerth SP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2485-94. PubMed ID: 20550983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology.
    Guo L; Deweerth SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1619-22. PubMed ID: 19964008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording.
    Kim JM; Im C; Lee WR
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.
    Liang Guo ; Guvanasen GS; Xi Liu ; Tuthill C; Nichols TR; DeWeerth SP
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):1-10. PubMed ID: 23853274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PDMS-based optical waveguide for transcutaneous powering of microelectrode arrays.
    Ersen A; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4475-4478. PubMed ID: 28269272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for increasing the electrode density of microelectrode arrays by utilizing bipolar behavior of a metallic film.
    Zhu F; Yan J; Pang S; Zhou Y; Mao B; Oleinick A; Svir I; Amatore C
    Anal Chem; 2014 Mar; 86(6):3138-45. PubMed ID: 24528154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording.
    Deku F; Cohen Y; Joshi-Imre A; Kanneganti A; Gardner TJ; Cogan SF
    J Neural Eng; 2018 Feb; 15(1):016007. PubMed ID: 28952963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Biological Neural Networks on High Density CMOS Microelectrode Arrays.
    Duru J; Küchler J; Ihle SJ; Forró C; Bernardi A; Girardin S; Hengsteler J; Wheeler S; Vörös J; Ruff T
    Front Neurosci; 2022; 16():829884. PubMed ID: 35264928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DC microelectrode array for investigating the intracellular ion changes.
    Aryasomayajula A; Derix J; Perike S; Gerlach G; Funk RH
    Biosens Bioelectron; 2010 Dec; 26(4):1268-72. PubMed ID: 20656468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceramic-based microelectrode arrays: recording surface characteristics and topographical analysis.
    Talauliker PM; Price DA; Burmeister JJ; Nagari S; Quintero JE; Pomerleau F; Huettl P; Hastings JT; Gerhardt GA
    J Neurosci Methods; 2011 Jun; 198(2):222-9. PubMed ID: 21513736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing.
    Li F; Xue M; Ma X; Zhang M; Cao T
    Anal Chem; 2011 Aug; 83(16):6426-30. PubMed ID: 21761929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording.
    Murakami T; Yada N; Yoshida S
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment.
    Guo J; Lindner E
    Anal Chem; 2009 Jan; 81(1):130-8. PubMed ID: 19117449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B
    Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.