These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19964046)

  • 1. Packaging and characterization of mechanically actuated microtweezers for biomedical applications.
    Wester BA; Ross JD; Rajaraman S; Allen MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2744-7. PubMed ID: 19964046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using micro-electro-mechanical systems (MEMS) to develop diagnostic tools.
    Demirci U
    J Vis Exp; 2007; (8):314. PubMed ID: 18989418
    [No Abstract]   [Full Text] [Related]  

  • 3. Engineering approaches to biomanipulation.
    Desai JP; Pillarisetti A; Brooks AD
    Annu Rev Biomed Eng; 2007; 9():35-53. PubMed ID: 17362196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated platform for bio-analysis and drug delivery.
    Amer S; Badawy W
    Curr Pharm Biotechnol; 2005 Feb; 6(1):57-64. PubMed ID: 15727556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Magnetically Actuated Milli/Micro-Scale Robots Locomotion and Features.
    Barros AO; Yang J
    Crit Rev Biomed Eng; 2019; 47(5):379-394. PubMed ID: 32422028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEMS: Enabled Drug Delivery Systems.
    Cobo A; Sheybani R; Meng E
    Adv Healthc Mater; 2015 May; 4(7):969-82. PubMed ID: 25703045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CMUT probe for medical ultrasonography: from microfabrication to system integration.
    Savoia AS; Calianov G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1127-38. PubMed ID: 22711408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization.
    Eslami S; Zareian R; Jalili N
    Rev Sci Instrum; 2012 Oct; 83(10):105002. PubMed ID: 23126795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
    Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K
    Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper.
    Kim K; Liu X; Zhang Y; Cheng J; Yu Wu X; Sun Y
    Biomed Microdevices; 2009 Apr; 11(2):421-7. PubMed ID: 19015993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millimeter-scale focal length tuning with MEMS-integrated meta-optics employing high-throughput fabrication.
    Han Z; Colburn S; Majumdar A; Böhringer KF
    Sci Rep; 2022 Mar; 12(1):5385. PubMed ID: 35354839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering.
    Tajitsu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1000-8. PubMed ID: 18519202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comment on "Nanorobotics control design: a collective behavior approach for medicine".
    Curtis AS
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):201-2; discussion 202-3. PubMed ID: 16117028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezo-actuated parallel mechanism for biological cell release at high speed.
    Avci E; Hattori T; Kamiyama K; Kojima M; Horade M; Mae Y; Arai T
    Biomed Microdevices; 2015 Oct; 17(5):98. PubMed ID: 26343357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technology for mobility and quality of life in spinal cord injury.
    Sisto SA; Forrest GF; Faghri PD
    IEEE Eng Med Biol Mag; 2008; 27(2):56-68. PubMed ID: 18463021
    [No Abstract]   [Full Text] [Related]  

  • 18. Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials.
    Wang W; Li S; Zhang H; Lu Y
    Recent Pat Nanotechnol; 2015; 9(1):33-42. PubMed ID: 25986228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.
    Strathman M; Liu Y; Li X; Lin LY
    Opt Express; 2013 Oct; 21(20):23934-41. PubMed ID: 24104304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane thickness design of implantable bio-MEMS sensors for the in-situ monitoring of blood flow.
    Steeves CA; Young YL; Liu Z; Bapat A; Bhalerao K; Soboyejo AB; Soboyejo WO
    J Mater Sci Mater Med; 2007 Jan; 18(1):25-37. PubMed ID: 17200811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.