These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19964050)

  • 1. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Left-ventricular shape determines intramyocardial mechanical heterogeneity.
    Choi HF; Rademakers FE; Claus P
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2351-61. PubMed ID: 21949116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of residual strain on the diastolic function of the left ventricle as predicted by a structural model.
    Nevo E; Lanir Y
    J Biomech; 1994 Dec; 27(12):1433-46. PubMed ID: 7806551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized evaluation of the passive myocardium in ischemic cardiomyopathy via computational modeling using Bayesian optimization.
    Torbati S; Daneshmehr A; Pouraliakbar H; Asgharian M; Ahmadi Tafti SH; Shum-Tim D; Heidari A
    Biomech Model Mechanobiol; 2024 Oct; 23(5):1591-1606. PubMed ID: 38954283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive stress-strain relation for the right ventricle in diastole.
    Moskowitz SE
    J Biomech; 1982; 15(4):249-55. PubMed ID: 7096380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diastolic anisotropic properties of the left ventricle in the conscious dog.
    Olsen CO; Glower DD; Lee KL; McHale PA; Rankin JS
    Circ Res; 1991 Sep; 69(3):765-78. PubMed ID: 1873871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study.
    Bovendeerd PH; Arts T; Huyghe JM; van Campen DH; Reneman RS
    J Biomech; 1992 Oct; 25(10):1129-40. PubMed ID: 1400513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element stress analysis of left ventricular mechanics in the beating dog heart.
    Guccione JM; Costa KD; McCulloch AD
    J Biomech; 1995 Oct; 28(10):1167-77. PubMed ID: 8550635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties.
    Fan L; Yao J; Yang C; Tang D; Xu D
    J Biomech Eng; 2015 Aug; 137(8):081005. PubMed ID: 25994130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of left ventricular behaviour in diastole by means of finite element method.
    Vinson CA; Gibson DG; Yettram AL
    Br Heart J; 1979 Jan; 41(1):60-7. PubMed ID: 426957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.