These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19964093)

  • 1. Detecting changes in motion characteristics during sports training.
    Kulić D; Venture G; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4011-4. PubMed ID: 19964093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Movement Primitives with Hidden Markov Models for Robotic and Biomedical Applications.
    Karg M; Kulić D
    Methods Mol Biol; 2017; 1552():199-213. PubMed ID: 28224501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and recognition of motion primitives in human activities.
    Sanzari M; Ntouskos V; Pirri F
    PLoS One; 2019; 14(4):e0214499. PubMed ID: 30933990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.
    Yang Y; Saleemi I; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1635-48. PubMed ID: 23681992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human movement analysis as a measure for fatigue: a hidden Markov-based approach.
    Karg M; Venture G; Hoey J; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):470-81. PubMed ID: 24445536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmenting human motion for automated rehabilitation exercise analysis.
    Feng-Shun Lin J; Kulić D
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2881-4. PubMed ID: 23366526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting changes in human motion using stochastic distance measures.
    Choudry M; Pillar M; Beach T; Kulić D; Callaghan JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3475-8. PubMed ID: 22255088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is movement variability important for sports biomechanists?
    Bartlett R; Wheat J; Robins M
    Sports Biomech; 2007 May; 6(2):224-43. PubMed ID: 17892098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
    Lin JF; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a tri-axial accelerometer to detect technique breakdown due to fatigue in distance runners: a preliminary perspective.
    Patterson M; McGrath D; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6511-4. PubMed ID: 22255830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural movement generation using hidden Markov models and principal components.
    Kwon J; Park FC
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1184-94. PubMed ID: 18784005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing movement trajectories using a Markov bi-clustering method.
    Erez K; Goldberger J; Sosnik R; Shemesh M; Rothstein S; Abeles M
    J Comput Neurosci; 2009 Dec; 27(3):543-52. PubMed ID: 19521757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
    Zhou F; De la Torre F; Hodgins JK
    IEEE Trans Pattern Anal Mach Intell; 2013 Mar; 35(3):582-96. PubMed ID: 22732658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
    Joukov V; Bonnet V; Karg M; Venture G; Kulic D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):407-418. PubMed ID: 28141526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated detection of videotaped neonatal seizures of epileptic origin.
    Karayiannis NB; Xiong Y; Tao G; Frost JD; Wise MS; Hrachovy RA; Mizrahi EM
    Epilepsia; 2006 Jun; 47(6):966-80. PubMed ID: 16822243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centroid neural network with a divergence measure for GPDF data clustering.
    Park DC; Kwon OH; Chung J
    IEEE Trans Neural Netw; 2008 Jun; 19(6):948-57. PubMed ID: 18541496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental Approach for Behavior Learning Using Primitive Motion Skills.
    Dawood F; Loo CK
    Int J Neural Syst; 2018 May; 28(4):1750038. PubMed ID: 29022403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unsupervised approach to detecting and isolating athletic movements.
    Um TT; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6268-6272. PubMed ID: 28269682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors.
    Guenterberg E; Yang AY; Ghasemzadeh H; Jafari R; Bajcsy R; Sastry SS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1019-30. PubMed ID: 19726268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abrupt motion tracking via intensively adaptive Markov-chain Monte Carlo sampling.
    Zhou X; Lu Y; Lu J; Zhou J
    IEEE Trans Image Process; 2012 Feb; 21(2):789-801. PubMed ID: 21937350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.