These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19964144)

  • 1. Development of an interactive upper extremity gestural robotic feedback system: from bench to reality.
    Wood KA; Lathan CE; Kaufman KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5973-6. PubMed ID: 19964144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy.
    Wood KC; Lathan CE; Kaufman KR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):300-5. PubMed ID: 23193461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Robotic assisted treadmill therapy in children with cerebral palsy].
    Borggräfe I; Meyer-Heim A; Heinen F
    MMW Fortschr Med; 2009 Oct; 151 Suppl 3():123-6. PubMed ID: 20623939
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficacy of robotic rehabilitation of ankle impairments in children with cerebral palsy.
    Wu YN; Ren Y; Hwang M; Gaebler-Spira DJ; Zhang LQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4481-4. PubMed ID: 21095776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper extremity rehabilitation of children with cerebral palsy using accelerometer feedback on a multitouch display.
    Dunne A; Do-Lenh S; O' Laighin G; Shen C; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1751-4. PubMed ID: 21096413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assistive acting movement therapy devices with pneumatic rotary-type soft actuators.
    Wilkening A; Baiden D; Ivlev O
    Biomed Tech (Berl); 2012 Dec; 57(6):445-56. PubMed ID: 23241570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the control of the MIT-skywalker.
    Artemiadis PK; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1287-91. PubMed ID: 21095920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Robot-assisted and computer-based neurorehabilitation for children: the story behind].
    Meyer-Heim A; van Hedel HJ
    Praxis (Bern 1994); 2014 Jul; 103(15):883-92. PubMed ID: 25051931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio cooperative robotic platform for motor function recovery of the upper limb after stroke.
    Rodriguez Guerrero C; Fraile Marinero J; Perez Turiel J; Rivera Farina P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4472-5. PubMed ID: 21095774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Reality environment assisting post stroke hand rehabilitation: case report.
    Tsoupikova D; Stoykov N; Kamper D; Vick R
    Stud Health Technol Inform; 2013; 184():458-64. PubMed ID: 23400202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an active-passive device for human ankle movement during functional magnetic resonance imaging analysis.
    Belforte G; Eula G
    Proc Inst Mech Eng H; 2012 Jan; 226(1):21-32. PubMed ID: 22888581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.