These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19964144)

  • 21. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation.
    Meyer-Heim A; van Hedel HJ
    Semin Pediatr Neurol; 2013 Jun; 20(2):139-45. PubMed ID: 23948688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A robotic voice simulator and the interactive training for hearing-impaired people.
    Sawada H; Kitani M; Hayashi Y
    J Biomed Biotechnol; 2008; 2008():768232. PubMed ID: 18389073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mechatronic device for the rehabilitation of ankle motor function.
    Bucca G; Bezzolato A; Bruni S; Molteni F
    J Biomech Eng; 2009 Dec; 131(12):125001. PubMed ID: 20524738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project.
    Ceres R; Pons JL; Calderón L; Jiménez AR; Azevedo L
    IEEE Eng Med Biol Mag; 2005; 24(6):55-63. PubMed ID: 16382806
    [No Abstract]   [Full Text] [Related]  

  • 26. AsTeRICS.
    Drajsajtl T; Struk P; Bednárová A
    Stud Health Technol Inform; 2013; 189():179-86. PubMed ID: 23739379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A low cost, adaptive mixed reality system for home-based stroke rehabilitation.
    Chen Y; Baran M; Sundaram H; Rikakis T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1827-30. PubMed ID: 22254684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Home based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome.
    Weightman A; Preston N; Levesley M; Holt R; Mon-Williams M; Clarke M; Cozens AJ; Bhakta B
    J Rehabil Med; 2011 Mar; 43(4):359-63. PubMed ID: 21347508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation.
    Houtsma JA; Van Houten FJ
    Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results.
    Lam P; Hebert D; Boger J; Lacheray H; Gardner D; Apkarian J; Mihailidis A
    J Neuroeng Rehabil; 2008 May; 5():15. PubMed ID: 18498641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the ROM of wrist movements in stroke patients by means of a haptic wrist robot.
    Squeri V; Masia L; Taverna L; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1268-71. PubMed ID: 22254547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hiding robot inertia using resonance.
    Vallery H; Duschau-Wicke A; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1271-4. PubMed ID: 21095916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extension assist control for individuals with cervical cord injury using motion assist robot for upper limb.
    Watanabe T; Yano K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1312-5. PubMed ID: 21095926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study.
    Qiu Q; Ramirez DA; Saleh S; Fluet GG; Parikh HD; Kelly D; Adamovich SV
    J Neuroeng Rehabil; 2009 Nov; 6():40. PubMed ID: 19917124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
    Ho HJ; Chen TC
    Comput Methods Programs Biomed; 2009 Nov; 96(2):96-107. PubMed ID: 19439391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Customized interactive robotic treatment for stroke: EMG-triggered therapy.
    Dipietro L; Ferraro M; Palazzolo JJ; Krebs HI; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):325-34. PubMed ID: 16200756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.