These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19964153)

  • 1. Detecting alterations in cell ultrastructure with optical imaging.
    Backman V; Subramanian H; Pradhan P; Liu Y; Capoglu I; Rogers JD; Roy HK; Taflove A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6325-6. PubMed ID: 19964153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction phase microscopy for quantifying cell structure and dynamics.
    Popescu G; Ikeda T; Dasari RR; Feld MS
    Opt Lett; 2006 Mar; 31(6):775-7. PubMed ID: 16544620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy.
    Subramanian H; Roy HK; Pradhan P; Goldberg MJ; Muldoon J; Brand RE; Sturgis C; Hensing T; Ray D; Bogojevic A; Mohammed J; Chang JS; Backman V
    Cancer Res; 2009 Jul; 69(13):5357-63. PubMed ID: 19549915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instantaneous Spatial Light Interference Microscopy.
    Ding H; Popescu G
    Opt Express; 2010 Jan; 18(2):1569-75. PubMed ID: 20173983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy.
    Chung E; Kim D; So PT
    Opt Lett; 2006 Apr; 31(7):945-7. PubMed ID: 16599220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis.
    Subramanian H; Pradhan P; Liu Y; Capoglu IR; Rogers JD; Roy HK; Brand RE; Backman V
    Opt Lett; 2009 Feb; 34(4):518-20. PubMed ID: 19373360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image reconstruction in spherical-wave intensity diffraction tomography.
    Anastasio MA; Shi D; Huang Y; Gbur G
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2651-61. PubMed ID: 16396024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells.
    Subramanian H; Pradhan P; Liu Y; Capoglu IR; Li X; Rogers JD; Heifetz A; Kunte D; Roy HK; Taflove A; Backman V
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20118-23. PubMed ID: 19073935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window.
    Jones MW; Abbey B; Gianoncelli A; Balaur E; Millet C; Luu MB; Coughlan HD; Carroll AJ; Peele AG; Tilley L; van Riessen GA
    Opt Express; 2013 Dec; 21(26):32151-9. PubMed ID: 24514809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of reconstruction algorithms for optical diffraction tomography.
    Guo P; Devaney AJ
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2338-47. PubMed ID: 16302387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superresolution of three-dimensional optical imaging by use of evanescent waves.
    Chaumet PC; Belkebir K; Sentenac A
    Opt Lett; 2004 Dec; 29(23):2740-2. PubMed ID: 15605490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase retrieval of optical fringe patterns from the ridge of a wavelet transform.
    Zhong J; Weng J
    Opt Lett; 2005 Oct; 30(19):2560-2. PubMed ID: 16208899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the diffraction-limit biological imaging by saturated excitation microscopy.
    Yamanaka M; Kawano S; Fujita K; Smith NI; Kawata S
    J Biomed Opt; 2008; 13(5):050507. PubMed ID: 19021372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffraction-induced coherence levels.
    Tavrov A; Schmit J; Kerwien N; Osten W; Tiziani H
    Appl Opt; 2005 Apr; 44(11):2202-12. PubMed ID: 15835365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark-field imaging with cylindrical-vector beams.
    Biss DP; Youngworth KS; Brown TG
    Appl Opt; 2006 Jan; 45(3):470-9. PubMed ID: 16463730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of nanoparticle sizes by conventional optical microscopy with standing evanescent field illumination.
    Yu X; Araki Y; Iwami K; Umeda N
    Opt Lett; 2008 Dec; 33(23):2794-6. PubMed ID: 19037429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient field microscopy for label-free diagnosis of human biopsies [Invited].
    Kim T; Sridharan S; Kajdacsy-Balla A; Tangella K; Popescu G
    Appl Opt; 2013 Jan; 52(1):A92-6. PubMed ID: 23292427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of missing low-frequency information on ptychographic and plane-wave coherent diffraction imaging.
    Liu H; Xu Z; Zhang X; Wu Y; Guo Z; Tai R
    Appl Opt; 2013 Apr; 52(11):2416-27. PubMed ID: 23670772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistically principled use of in-line measurements in intensity diffraction tomography.
    Huang Y; Anastasio MA
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):626-42. PubMed ID: 17301852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Half-scan and single-plane intensity diffraction tomography for phase objects.
    Shi D; Anastasio MA; Huang Y; Gbur G
    Phys Med Biol; 2004 Jun; 49(12):2733-52. PubMed ID: 15272685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.