BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19964241)

  • 1. Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes.
    Khraiche ML; Jackson N; Muthuswamy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():777-80. PubMed ID: 19964241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural stimulation with a carbon nanotube microelectrode array.
    Wang K; Fishman HA; Dai H; Harris JS
    Nano Lett; 2006 Sep; 6(9):2043-8. PubMed ID: 16968023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y; Chang JC; Wheeler BC; Brewer GJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carbon nanotube and conducting polymer coated microelectrodes on single-unit recordings in vitro.
    Charkhkar H; Knaack GL; Mandal HS; Keefer EW; Pancrazio JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():469-73. PubMed ID: 25569998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube-based neurochips.
    David-Pur M; Shein M; Hanein Y
    Methods Mol Biol; 2010; 625():171-7. PubMed ID: 20422389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical properties and myocyte interaction of carbon nanotube microelectrodes.
    Fung AO; Tsiokos C; Paydar O; Chen LH; Jin S; Wang Y; Judy JW
    Nano Lett; 2010 Nov; 10(11):4321-7. PubMed ID: 20954739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth.
    Ni Y; Hu H; Malarkey EB; Zhao B; Montana V; Haddon RC; Parpura V
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1707-12. PubMed ID: 16245532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.
    Pan AI; Lin MH; Chung HW; Chen H; Yeh SR; Chuang YJ; Chang YC; Yew TR
    Analyst; 2016 Jan; 141(1):279-84. PubMed ID: 26588673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.
    Yi W; Chen C; Feng Z; Xu Y; Zhou C; Masurkar N; Cavanaugh J; Cheng MM
    Nanotechnology; 2015 Mar; 26(12):125301. PubMed ID: 25742874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cone-shaped 3D carbon nanotube probe for neural recording.
    Su HC; Lin CM; Yen SJ; Chen YC; Chen CH; Yeh SR; Fang W; Chen H; Yao DJ; Chang YC; Yew TR
    Biosens Bioelectron; 2010 Sep; 26(1):220-7. PubMed ID: 20685101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
    Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F
    J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays.
    Manos P; Pancrazio JJ; Coulombe MG; Ma W; Stenger DA
    Neurosci Lett; 1999 Aug; 271(3):179-82. PubMed ID: 10507698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R
    Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multielectrode Arrays.
    Burley R; Harvey JRM
    Methods Mol Biol; 2021; 2188():109-132. PubMed ID: 33119849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-density MEA recordings unveil the dynamics of bursting events in Cell Cultures.
    Lonardoni D; Di Marco S; Amin H; Maccione A; Berdondini L; Nieus T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3763-6. PubMed ID: 26737112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.
    Burblies N; Schulze J; Schwarz HC; Kranz K; Motz D; Vogt C; Lenarz T; Warnecke A; Behrens P
    PLoS One; 2016; 11(7):e0158571. PubMed ID: 27385031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.