BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19964265)

  • 1. A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution.
    Roniotis A; Marias K; Sakkalis V; Tsibidis GD; Zervakis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2807-10. PubMed ID: 19964265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-depth analysis and evaluation of diffusive glioma models.
    Roniotis A; Sakkalis V; Karatzanis I; Zervakis ME; Marias K
    IEEE Trans Inf Technol Biomed; 2012 May; 16(3):299-307. PubMed ID: 22287245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging.
    Jbabdi S; Mandonnet E; Duffau H; Capelle L; Swanson KR; Pélégrini-Issac M; Guillevin R; Benali H
    Magn Reson Med; 2005 Sep; 54(3):616-24. PubMed ID: 16088879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recursive anisotropic fast marching approach to reaction diffusion equation: application to tumor growth modeling.
    Konukoglu E; Sermesant M; Clatz O; Peyrat JM; Delingette H; Ayache N
    Inf Process Med Imaging; 2007; 20():687-99. PubMed ID: 17633740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images.
    Yuan J; Liu L
    Magn Reson Imaging; 2016 Feb; 34(2):114-9. PubMed ID: 26518060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.
    Painter KJ; Hillen T
    J Theor Biol; 2013 Apr; 323():25-39. PubMed ID: 23376578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of efficient protocols to control glioma growth.
    Branco JR; Ferreira JA; de Oliveira P
    Math Biosci; 2014 Sep; 255():83-90. PubMed ID: 25057777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing finite elements and finite differences for developing diffusive models of glioma growth.
    Roniotis A; Marias K; Sakkalis V; Stamatakos G; Zervakis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6797-800. PubMed ID: 21095843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling glioma growth and mass effect in 3D MR images of the brain.
    Hogea C; Davatzikos C; Biros G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):642-50. PubMed ID: 18051113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics.
    Ma L; Song ZJ
    Clin Neurol Neurosurg; 2013 Dec; 115(12):2489-95. PubMed ID: 24183513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas.
    Gholami A; Mang A; Biros G
    J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.
    Swan A; Hillen T; Bowman JC; Murtha AD
    Bull Math Biol; 2018 May; 80(5):1259-1291. PubMed ID: 28493055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases.
    Suarez C; Maglietti F; Colonna M; Breitburd K; Marshall G
    PLoS One; 2012; 7(6):e39616. PubMed ID: 22761843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity.
    Lee HY; Na DG; Song IC; Lee DH; Seo HS; Kim JH; Chang KH
    J Comput Assist Tomogr; 2008; 32(2):298-303. PubMed ID: 18379322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings.
    Engwer C; Hunt A; Surulescu C
    Math Med Biol; 2016 Dec; 33(4):435-459. PubMed ID: 26363335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model.
    Conte M; Gerardo-Giorda L; Groppi M
    J Theor Biol; 2020 Feb; 486():110088. PubMed ID: 31756339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases.
    Roniotis A; Manikis GC; Sakkalis V; Zervakis ME; Karatzanis I; Marias K
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):255-63. PubMed ID: 21990337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue.
    Linninger AA; Somayaji MR; Erickson T; Guo X; Penn RD
    J Biomech; 2008 Jul; 41(10):2176-87. PubMed ID: 18550067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach.
    Harko T; Mak MK
    Math Biosci Eng; 2015 Feb; 12(1):41-69. PubMed ID: 25811333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of myosin II in glioma invasion: A mathematical model.
    Lee W; Lim S; Kim Y
    PLoS One; 2017; 12(2):e0171312. PubMed ID: 28166231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.