BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19964272)

  • 21. Atherosclerotic carotid bifurcation phantoms with stenotic soft inclusions for ultrasound flow and vessel wall elastography imaging.
    Chayer B; van den Hoven M; Cardinal MR; Li H; Swillens A; Lopata R; Cloutier G
    Phys Med Biol; 2019 May; 64(9):095025. PubMed ID: 30893669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in transmural pressure and axial loading ex vivo affect arterial remodeling and material properties.
    Lawrence AR; Gooch KJ
    J Biomech Eng; 2009 Oct; 131(10):101009. PubMed ID: 19831479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Longitudinal differences in the mechanical properties of the thoracic aorta depend on circumferential regions.
    Kim J; Hong JW; Baek S
    J Biomed Mater Res A; 2013 May; 101(5):1525-9. PubMed ID: 23129235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro.
    Fronek K; Schmid-Schoenbein G; Fung YC
    J Appl Physiol; 1976 Apr; 40(4):634-7. PubMed ID: 931885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.
    Yang T; Chui CK; Yu RQ; Qin J; Chang SK
    Int J Comput Assist Radiol Surg; 2011 Nov; 6(6):829-38. PubMed ID: 21487834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating the elastic modulus of non-atherosclerotic elastic arteries.
    Dobrin PB; Mrkvicka R
    J Hypertens Suppl; 1992 Aug; 10(6):S7-10. PubMed ID: 1432331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanics of porcine coronary arteries ex vivo employing impedance planimetry: a new intravascular technique.
    Frøbert O; Gregersen H; Bagger JP
    Ann Biomed Eng; 1996; 24(1):148-55. PubMed ID: 8669712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Approach to Assess the In Situ Versus Ex Vivo Mechanical Behaviors of the Coronary Artery.
    Wang R; Raykin J; Brewster LP; Gleason RL
    J Biomech Eng; 2017 Jan; 139(1):0110101-7. PubMed ID: 27893049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neutral axis location in bending and Young's modulus of different layers of arterial wall.
    Yu Q; Zhou J; Fung YC
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H52-60. PubMed ID: 8342664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data.
    Grimal Q; Haupert S; Mitton D; Vastel L; Laugier P
    Med Eng Phys; 2009 Nov; 31(9):1140-7. PubMed ID: 19683957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the elasticity of transverse isotropic soft tissues (L).
    Royer D; Gennisson JL; Deffieux T; Tanter M
    J Acoust Soc Am; 2011 May; 129(5):2757-60. PubMed ID: 21568379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mechanical analysis of conduit arteries accounting for longitudinal residual strains.
    Wang R; Gleason RL
    Ann Biomed Eng; 2010 Apr; 38(4):1377-87. PubMed ID: 20087772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force.
    Dutta P; Urban MW; Le Maître OP; Greenleaf JF; Aquino W
    Phys Med Biol; 2015 Jul; 60(13):5279-96. PubMed ID: 26109582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination and modeling of the inelasticity over the length of the porcine carotid artery.
    García A; Martínez MA; Peña E
    J Biomech Eng; 2013 Mar; 135(3):31004. PubMed ID: 24231815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension.
    Lally C; Reid AJ; Prendergast PJ
    Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.