These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19964304)

  • 1. Models of the peripheral nerves for detection and control of neural activity.
    Durand D; Park HJ; Wodlinger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3326-9. PubMed ID: 19964304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and control of activity in peripheral nerves.
    Durand DM; Park HJ; Wodlinger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3352-4. PubMed ID: 19163426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and recovery of peripheral neural sources with beamforming algorithms.
    Wodlinger B; Durand DM
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):461-8. PubMed ID: 19840913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion control of the ankle joint with a multiple contact nerve cuff electrode: a simulation study.
    Park HJ; Durand DM
    Biol Cybern; 2014 Aug; 108(4):445-57. PubMed ID: 24939581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective recovery of fascicular activity in peripheral nerves.
    Wodlinger B; Durand DM
    J Neural Eng; 2011 Oct; 8(5):056005. PubMed ID: 21828890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion control of the rabbit ankle joint using a flat interface nerve electrode.
    Park H; Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6789-92. PubMed ID: 19964710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind source separation of peripheral nerve recordings.
    Tesfayesus W; Durand DM
    J Neural Eng; 2007 Sep; 4(3):S157-67. PubMed ID: 17873415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural engineering--a new discipline for analyzing and interacting with the nervous system.
    Durand DM
    Methods Inf Med; 2007; 46(2):142-6. PubMed ID: 17347744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.
    Rieger R; Schuettler M; Chuang SC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):937-45. PubMed ID: 24760928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Anatomical Detail and Tissue Conductivity Variations in Simulations of Multi-Contact Nerve Cuff Recordings.
    Garai P; Koh RGL; Schuettler M; Stieglitz T; Zariffa J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1653-1662. PubMed ID: 27898383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A slowly penetrating interfascicular nerve electrode for selective activation of peripheral nerves.
    Tyler DJ; Durand DM
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):51-61. PubMed ID: 9086385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective chronic recording in small nerve fascicles of sciatic nerve with carbon nanotube yarns in rats.
    Kotamraju BP; Eggers TE; McCallum GA; Durand DM
    J Neural Eng; 2024 Jan; 20(6):. PubMed ID: 38100824
    [No Abstract]   [Full Text] [Related]  

  • 15. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based Bayesian signal extraction algorithm for peripheral nerves.
    Eggers TE; Dweiri YM; McCallum GA; Durand DM
    J Neural Eng; 2017 Oct; 14(5):056009. PubMed ID: 28675376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of EEG source localization algorithms to the monitoring of active pathways in peripheral nerves.
    Zariffa J; Popovic MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4216-9. PubMed ID: 19163642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation Strategies for Bioelectric Signal Changes in Chronic Selective Nerve Cuff Recordings: A Simulation Study.
    Sammut S; Koh RGL; Zariffa J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based evaluation of the short-circuited tripolar cuff configuration.
    Andreasen LN; Struijk JJ
    Med Biol Eng Comput; 2006 May; 44(5):404-13. PubMed ID: 16937182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic modeling of selective stimulation of the human sciatic nerve with a flat Interface Nerve Electrode.
    Schiefer MA; Tyler DJ; Triolo RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4068-71. PubMed ID: 22255234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.